Answer:
Percent yield = 90.5%
Explanation:
Given data:
Mass of carbon dioxide = 500 g
Mass of water = excess
Actual yield of carbonic acid = 640 g
Percent yield = ?
Solution:
Balanced chemical equation:
CO₂ + H₂O → H₂CO₃
Number of moles of carbon dioxide
Number of moles = Mass / molar mass
Number of moles = 500 g/ 44 g/mol
Number of moles = 11.4 mol
Now we will compare the moles of H₂CO₃ with CO₂.
CO₂ : H₂CO₃
1 : 1
11.4 : 11.4
Mass of carbonic acid:
Mass = number of moles × molar mass
Mass = 11.4 mol × 62.03 g/mol
Mass = 707.14 g
Percent yield:
Percent yield = actual yield / theoretical yield × 100
Percent yield = 640 g/ 707.14 g × 100
Percent yield = 90.5%
Si has 4 available elections. Each Cl has 7.
7 x 4 = 28 + the 4 from your Si gives the total of 32 total electrons.
We can use two equations for this problem.<span>
t1/2 = ln
2 / λ = 0.693 / λ
Where t1/2 is the half-life of the element and λ is
decay constant.
20 days = 0.693 / λ
λ = 0.693 / 20 days
(1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, No is the initial amount of substance, λ is decay constant and t is the time
taken.
t = 40 days</span>
<span>No = 200 g
From (1) and (2),
Nt = 200 g eΛ(-(0.693 / 20 days) 40 days)
<span>Nt = 50.01 g</span></span><span>
</span>Hence, 50.01 grams of isotope will remain after 40 days.
<span>
</span>
1. put goggles on
2.but gloves on
3.put a lab coat on
Answer:
The noble gases with complete outermost shell electrons.
Explanation:
Noble gases or inert gases do not react chemically with other elements because they have a complete configuration of their electronic shells. What drives chemical reaction is simply the exchange of electrons between two or more atoms. It can be a loss, a gain or simple sharing of electrons in order to achieve a complete configuration just like those of noble gases.