Since these are supplementary angles (two angles which sum to 180°) we can say:
4x+x=180 combine like terms on left side
5x=180 divide both sides by 5
x=36°
Answer:
<em>f(x)=x²-3x-10</em>
Step-by-step explanation:
\begin{gathered}f(x) = x {}^{2} - 3x - 10 \\ to \: find \: x \: intercept \:o r \: zero \: substitute \: f(x) = 0\: \\ 0 = x {}^{2} - 3x - 10 \\ x {}^{2} - 3x - 10 = 0 \\ x {}^{2} + 2x - 5x - 10 = 0 \\ x(x + 2) - 5x - 10 = 0 \\ x(x + 2) - 5(x + 2) = 0 \\ (x + 2).(x - 5) = 0 \\ x + 2 = 0 \\ x - 5 = 0 \\ x = - 2 \\ x = 5\end{gathered}
f(x)=x
2
−3x−10
tofindxinterceptorzerosubstitutef(x)=0
0=x
2
−3x−10
x
2
−3x−10=0
x
2
+2x−5x−10=0
x(x+2)−5x−10=0
x(x+2)−5(x+2)=0
(x+2).(x−5)=0
x+2=0
x−5=0
x=−2
x=5
therefore the zeros of the equation are x₁=-2,x₂=5
Answer:
12cm and 16cm
Step-by-step explanation:
The hypotenuse of the right angle triangle = 20cm
let the other two sides be x and y;
The difference;
x = y - 4
Problem:
Find x and y;
Solution:
According to the pythagoras theorem;
x² + y² = 20² ------ i
x² + y² = 400 ----- i
and x - y = 4 ---- ii
So; x = 4 + y
Now input the value into equation (i);
(y + 4)² + y² = 400
(y+4)(y+4) + y² = 400
y² + y² + 4y + 4y + 16 = 400
2y² + 8y + 16 = 400
2y² + 8y + 16 -400 = 0
2y² + 8y - 384 = 0;
y² + 4y - 192 = 0
Factorize the equation;
y² + 16y - 12y - 192 = 0
y(y + 16) - 12(y + 16) = 0
(y-12)(y + 16) = 0
y -12 = 0 or y+ 16 = 0
y = 12 or -16
It is not realistic for the length of a body to be a negative value, so y= 12;
since;
x - y = 4,
x = 4 + 12
x = 16