Equation:
6(1/x) = 2(1/7)
-----
6/x = 2/7
-----
2x = 42
x = 21
Answer:
<h2>(f · g)(x) is odd</h2><h2>(g · g)(x) is even</h2>
Step-by-step explanation:
If f(x) is even, then f(-x) = f(x).
If g(x) is odd, then g(-x) = -g(x).
(f · g)(x) = f(x) · g(x)
Check:
(f · g)(-x) = f(-x) · g(-x) = f(x) · [-g(x)] = -[f(x) · g(x)] = -(f · g)(x)
(f · g)(-x) = -(f · g)(x) - odd
(g · g)(x) = g(x) · g(x)
Check:
(g · g)(-x) = g(-x) · g(-x) = [-g(x)] · [-g(x)] = g(x) · g(x) = (g · g)(x)
(g · g)(-x) = (g · g)(x) - even
Answer:
-7
Step-by-step explanation:
Let's try getting rid of the numbers to isolate the x.
Add x on both sides to get rid of the x on the right side and to get 2x on the left side. This leaves us with 15.3 + 2x = 1.3
Subtract 15.3 on both sides to get rid of the 15.3 on the left side.
This would leave us with 2x = -14
Divide 2 on both sides to isolate the x.
The answer is x = -7
Step-by-step explanation:
1 Remove parentheses.
8{y}^{2}\times -3{x}^{2}{y}^{2}\times \frac{2}{3}x{y}^{4}
8y
2
×−3x
2
y
2
×
3
2
xy
4
2 Use this rule: \frac{a}{b} \times \frac{c}{d}=\frac{ac}{bd}
b
a
×
d
c
=
bd
ac
.
\frac{8{y}^{2}\times -3{x}^{2}{y}^{2}\times 2x{y}^{4}}{3}
3
8y
2
×−3x
2
y
2
×2xy
4
3 Take out the constants.
\frac{(8\times -3\times 2){y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
(8×−3×2)y
2
y
2
y
4
x
2
x
4 Simplify 8\times -38×−3 to -24−24.
\frac{(-24\times 2){y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
(−24×2)y
2
y
2
y
4
x
2
x
5 Simplify -24\times 2−24×2 to -48−48.
\frac{-48{y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
−48y
2
y
2
y
4
x
2
x
6 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
.
\frac{-48{y}^{2+2+4}{x}^{2+1}}{3}
3
−48y
2+2+4
x
2+1
7 Simplify 2+22+2 to 44.
\frac{-48{y}^{4+4}{x}^{2+1}}{3}
3
−48y
4+4
x
2+1
8 Simplify 4+44+4 to 88.
\frac{-48{y}^{8}{x}^{2+1}}{3}
3
−48y
8
x
2+1
9 Simplify 2+12+1 to 33.
\frac{-48{y}^{8}{x}^{3}}{3}
3
−48y
8
x
3
10 Move the negative sign to the left.
-\frac{48{y}^{8}{x}^{3}}{3}
−
3
48y
8
x
3
11 Simplify \frac{48{y}^{8}{x}^{3}}{3}
3
48y
8
x
3
to 16{y}^{8}{x}^{3}16y
8
x
3
.
-16{y}^{8}{x}^{3}
−16y
8
x
3
Done