1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
14

Please help me!!!!!​

Mathematics
1 answer:
denpristay [2]3 years ago
6 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π               → A = π - (B + C)

                                               → B = π - (A + C)

                                               → C = π - (A + B)

Use Sum to Product Identity: sin A - sin B = 2 cos [(A + B)/2] · sin [(A - B)/2]

Use the following Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → RHS:</u>

LHS:                        sin A - sin B + sin C

                             = (sin A - sin B) + sin C

\text{Sum to Product:}\quad 2\cos \bigg(\dfrac{A+B}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad 2\cos \bigg(\dfrac{\pi -(B+C)}{2}+\dfrac{B}{2}}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad =2\cos \bigg(\dfrac{\pi -C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

.\qquad \qquad =2\cos \bigg(\dfrac{\pi}{2} -\dfrac{C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Cofunction:} \qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Factor:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\bigg]

\text{Given:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)\bigg]\\\\\\.\qquad \qquad =2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi}{2} -\dfrac{(A+B)}{2}\bigg)\bigg]

\text{Cofunction:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)\bigg]

\text{Sum to Product:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ 2\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad \qquad =4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{LHS = RHS:}\quad 4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)=4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)\quad \checkmark

You might be interested in
Can someone help me with these please
Llana [10]

Answer:

C which is  12

36 and 48 are both a multiple of 12

4 0
3 years ago
Read 2 more answers
Y=−2x+5 and y=−12x−3 . Are the lines parallel, perpendicular, or neither?
lina2011 [118]

Answer:

Neither.

Parallel lines have the same slope. Perpendicular lines have the opposite reciprocal slope. Neither of these are the case in this example, so the correct answer is Neither.

Let me know if this helps!

5 0
3 years ago
4. Duane and Roberto joined a rock-a-thon
KonstantinChe [14]

Answer:

Roberto rocked 3 hours longer than Duane.

4 0
3 years ago
Read 2 more answers
Find the values of x, y, and z in the triangle to the right
chubhunter [2.5K]

Answer:

x = 36 , y = 64 , z = 80

Step-by-step explanation:

Exterior angle equals the sum of opposite interior angle.

3x +  8 = x +  z

3x - x - z = -8

2x  -  z = -8   ------------ (I)

z + 3x - 8 = 180 {linear pair}

3x + z = 180 + 8

3x + z = 188 --------------(II)

Add (I) and (II) and z will be eliminated and we can find the value of 'x'

(I)            2x - z = -8

(II)          <u> 3x + z = 188</u>   {Now add}

               5x      = 180

x = 180/5

x = 36

Plugin x = 36 in equation (II)

     3*36 +z = 188

        108 + z = 188

                z = 188- 108

z = 80

x + y + z = 180 ----------------(III)  {angle sum property of triangle}

36 + 80 +y = 180

       116 + y = 180

               y = 180 - 116

y = 64

5 0
3 years ago
Ms. Ponse is saving for a new iPhone. She has $150 saved and will be saving $50 per month. If the phone costs $799, how many mon
yan [13]
It’ll take her 13 months
4 0
3 years ago
Read 2 more answers
Other questions:
  • Someone please help me <br><br> The options are : <br> A) 45<br> B) 135<br> C) 120<br> D) 75
    10·2 answers
  • All the values that are soulutions to the inequality x&lt; -2
    11·1 answer
  • $0.82+$0.70+$0.25 what is the sum
    12·2 answers
  • What is the slope of a line with the equation y = -x + 6?
    5·1 answer
  • BRAINLIESTTT! PLEASE ANSWER ASAP
    10·1 answer
  • Is the graph increasing, decreasing, or constant?
    5·1 answer
  • URGENT. I don't know what this is
    12·1 answer
  •             4.   A patient is to receive 1.5 grams (g) of an antibiotic in 3 equal does.  If tablets available are 250 milligram
    9·1 answer
  • Question is in the picture.
    7·1 answer
  • Please help me!!!! I will mark brainlist.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!