1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
14

Please help me!!!!!​

Mathematics
1 answer:
denpristay [2]3 years ago
6 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π               → A = π - (B + C)

                                               → B = π - (A + C)

                                               → C = π - (A + B)

Use Sum to Product Identity: sin A - sin B = 2 cos [(A + B)/2] · sin [(A - B)/2]

Use the following Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → RHS:</u>

LHS:                        sin A - sin B + sin C

                             = (sin A - sin B) + sin C

\text{Sum to Product:}\quad 2\cos \bigg(\dfrac{A+B}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad 2\cos \bigg(\dfrac{\pi -(B+C)}{2}+\dfrac{B}{2}}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad =2\cos \bigg(\dfrac{\pi -C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

.\qquad \qquad =2\cos \bigg(\dfrac{\pi}{2} -\dfrac{C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Cofunction:} \qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Factor:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\bigg]

\text{Given:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)\bigg]\\\\\\.\qquad \qquad =2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi}{2} -\dfrac{(A+B)}{2}\bigg)\bigg]

\text{Cofunction:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)\bigg]

\text{Sum to Product:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ 2\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad \qquad =4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{LHS = RHS:}\quad 4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)=4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)\quad \checkmark

You might be interested in
Let $DEF$ be an equilateral triangle with side length $3.$ At random, a point $G$ is chosen inside the triangle. Compute the pro
umka21 [38]

|\Omega|=(\text{the area of the triangle})=\dfrac{a^2\sqrt3}{4}=\dfrac{3^2\sqrt3}{4}=\dfrac{9\sqrt3}{4}\\|A|=(\text{the area of the sector})=\dfrac{\alpha\pi r^2}{360}=\dfrac{60\pi \cdot 1^2}{360}=\dfrac{\pi}{6}\\\\\\P(A)=\dfrac{\dfrac{\pi}{6}}{\dfrac{9\sqrt3}{4}}\\\\P(A)=\dfrac{\pi}{6}\cdot\dfrac{4}{9\sqrt3}\\\\P(A)=\dfrac{2\pi}{27\sqrt3}\\\\P(A)=\dfrac{2\pi\sqrt3}{27\cdot3}\\\\P(A)=\dfrac{2\pi\sqrt3}{81}\approx13.4\%

8 0
3 years ago
Read 2 more answers
Which expression is equivalent to one over 3p + 15?
Dafna1 [17]
<span>3p + 15 = 3(p + 5) (distributive property)

answer
</span><span>3(p + 5)</span>
6 0
3 years ago
Read 2 more answers
h.) How many different ways can Johnny place an algebra book, a geometry book, a chemistry book, an English book, and a health b
Nady [450]

Answer:

5!

Step-by-step explanation:

take algebra book. it can be placed first or 2nd or 3rd or 4th or last. so 5 different ways. but geometry book will be arranged in 4 ways, since algebra book is already arranged.

5p5

5!/0!= 5! = 120

7 0
3 years ago
Which expression is equivalent
Artist 52 [7]
I would say c
Ccccccccccccccccccccccc
8 0
2 years ago
What are the coordinates for a dilated triangle, A’B’C’, if the scale factor for the dilation is 0.75?
ycow [4]

Answer:

D.

A’(–3.75, 0.75); B’(0, 1.5); C’(3, –1.5)

Step-by-step explanation:

Did this on edgenut and got it right

Hope this helps

6 0
2 years ago
Read 2 more answers
Other questions:
  • |n/8| &gt; or equal to 2
    11·1 answer
  • A mother shares a box of 20 chocolates in the same ratio as her children's ages . Calculate how many chocolates each child gets
    12·1 answer
  • Help me with this math homework
    13·1 answer
  • Simplify 3x + 2 (9-5) <br><br>please help....
    5·2 answers
  • What is the measure of the missing angle?
    6·2 answers
  • X-y+z for x= 18,y=6,z=1
    11·2 answers
  • Jane buys a pack of 6 towels for 15.60 .
    12·1 answer
  • If one of the zeroes of the cubic polynomial p(x)=ax³+bx²+cx+d is zero then find the product of other two zeroes of p(x).​
    5·1 answer
  • given Q= 100K^0.5 L^0.5 w=50 r=40 show how to determine the amount of labor and capital that the firm should use in order to min
    9·1 answer
  • What does a 360 degrees rotation look like?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!