Answer:
cellular respiration
Explanation:
All exergonic processes produced in the cell, through which substances oxidize and chemical energy is released, are grouped under the name of cellular respiration, but to break down an organic molecule the cells employ, mainly dehydrogenations that can be carried carried out in the presence or absence of atmospheric O2 oxygen. There are therefore two types of breathing: aerobic respiration and anaerobic respiration. The latter also called fermentation.
Aerobic respiration (oxidative phosphorylation)
- Use molecular O2.
- It degrades glucose to CO2 and H2O
- Exergonic
- Recovers about 50% of chemical energy
- Present in most organisms.
- It uses enzymes located in the mitochondria.
Answer:
option D= Gold (I) nitride
Explanation:
The name of the given compound is gold(I) nitride.
Molar mass can be determine by following way:
molar mass Au3N = (molar mass of gold × 3) + (molar mass of nitrogen)
molar mass Au3N = (196.97 × 3 ) + ( 14 )
molar mass of Au3N = 590.91 g/mol + 14 g/mol
molar mass of Au3N = 604.91 g/mol
The nitrogen has valency of -3 so three Au(+1) will require while the valency of Au is (1+) one nitrogen will require to make the compound overall neutral.
Au3N
3(1+) + (-3) = 0
+3 - 3 = 0
0 = 0
The overall charge is 0, the compound will be neutral.
Answer:
1.84 L
Explanation:
Using the equation for reversible work:

Where:
W is the work done (J) = -287 J.
Since the gas did work, therefore W is negative.
P is the pressure in atm = 1.90 atm.
However, work done is in joules and pressure is in atm. We can use the values of universal gas constant as a convenient conversion unit. R = 8.314 J/(mol*K); R = 0.0821 (L*atm)/(mol*K)
Therefore, the conversion unit is 0.0821/8.314 = 0.00987 (L*atm)/J
is the initial volume = 0.350 L
is the final volume = ?
Thus:
(-287 J)*0.00987 (L*atm)/J = -1.9 atm*(
- 0.350) L
= [(287*0.00987)+(1.9*0.350)]/1.9 = (2.833+0.665)/1.9 =1.84 L
Molar mass NaCl = 58.5 g/mol
C = 158.0 g/L
Molarity = C / molar mass
M = 158.0 / 58.5
M = 2.7000 M
hope this helps!
Hey there mate ;), Im Benjemin and lets solve your question.
★ (Alkanes) : forms single bonds between carbon atoms.
The first four elements are gases and others are liquid in state.
★(Alkenes) : forms double bonds between carbon atoms.
The first three alkenes are gases and rest are liquid.
★ (Alkynes) : forms triple bonds between carbon atoms.
First three are gases and the last one is liquid.
According to boiling point :
The larger structure of the hydrocarbons, the higher the boiling points they have.
In the 3 tables, we can see that the boiling point increases.