Answer:
pH of the final solution = 9.15
Explanation:
Equation of the reaction: HCl + NH₃ ----> NH₄Cl
Number of moles of NH₃ = molarity * volume (L)
= 0.4 M * (300/1000) * 1 L = 0.12 moles
Number of moles of HCl = molarity * volume (L)
= 0.3 M * (175/1000) * 1 L = 0.0525 moles
Since all he acid is used up in the reaction, number of moles of acid used up equals number of moles of NH₄Cl produced
Number moles of NH₄Cl produced = 0.0525 moles
Number of moles of base left unreacted = 0.12 - 0.0525 = 0.0675
pOH = pKb + log([salt]/[base])
pKb = -logKb
pOH = -log (1.8 * 10⁻⁵) + log (0.0525/0.06755)
pOh = 4.744 + 0.109
pOH = 4.853
pH = 14 - pOH
pH = 14 - 4.853
pH = 9.15
Therefore, pH of the final solution = 9.15
Explanation:
We will balance equation which describes the reaction between sulfuric acid and sodium bicarbonate: as follows.
Next we will calculate how many moles of
are present in 85.00 mL of 1.500 M sulfuric acid.
As, Molarity = 
1.500 M = 
n = 0.1275 mol
Now set up and solve a stoichiometric conversion from moles of
to grams of
. As, the molar mass of
is 84.01 g/mol.
= 21.42 g
So unfortunately, 15.00 grams of sodium bicarbonate will "not" be sufficient to completely neutralize the acid. You would need an additional 6.42 grams to complete the task.
8 electrons makes a full shell in an atom
Dmitri Mendeleev was the creator and therefore organizer of the periodic table.
Answer:
HNO₃.
Explanation:
- It is known that acids decrease the pH of the solution, while bases increase the pH of the solution.
So, HF and HNO₃ decrease the pH of the solution as they produce H⁺ in the solution.
<em>While, KOH and NH₃ increase the pH of the solution as they produce OH⁻ in the solution.</em>
<em />
HNO₃ will decrease the pH of the solution greater than HF.
- Because HNO₃ is strong acid that decomposes completely to produce H⁺ more than the same concentration of HF that is a weak acid which does not decomposed completely to produce H⁺.