B. 11,540
<h3>Further explanation
</h3>
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually radioactive elements have an unstable atomic nucleus.
General formulas used in decay:

T = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Nt=25 g
No=100 g
t1/2=5770 years

Answer:
aldehyde
carbon-1
ketone
carbon-2
Explanation:
Monosaccharides are colorless crystalline solids that are very soluble in water. Moat have a swwet taste. D-Fructose is the sweetest monosaccharide.
In the open chain form, monosaaccharides have a carbonuyl group in one of their chains. If the carbonyl group is in the form of an aldehyde group, the monosaccharide is an aldose; if the carbonyl group is in the form of a ketone group, the monosaccharide is known as a ketose. glucose is an aldose while fructose is a ketose.
In D-glucose, there is an aldehyde functional group, and the carbonyl group is at carbon-1 when looking at the Fischer projection.
In D-fructose, there is a ketone functional group, and the carbonyl group is at carbon-2 when looking at the Fischer projection.
In NaMnO₄, Mn has the highest oxidation number.
The question is incomplete, the complete question is;
Which of the following species contains manganese with the highest oxidation number?
A) Mn
B) MnF₂
C) Mn₃(PO₄)₂
D) MnCl₄
E) NaMnO₄
In order to ascertain the specie that contains manganese with the highest oxidation number, we must calculate the oxidation number of manganese in each of the species one after the other.
1) For Mn, the oxidation number of Mn is zero because the atom is uncombined.
2) For MnF₂;
Mn has an oxidation number of +2
3) For Mn₃(PO₄)₂
Mn has an oxidation number of +2
4) For MnCl₄
Mn has an oxidation number of +4
5) For NaMnO₄
Mn has an oxidation number of +7
Hence in NaMnO₄, Mn has the highest oxidation number.
Learn more: brainly.com/question/10079361
Explanation:
a. Magnesium oxide is used mainly in soil treatment and groundwater remediation, wastewater treatment, etc. it is used for it's acid buffering capacity and effectiveness in dissolving heavy metals.
b. MgO is the chemical equation for the reaction.
c. multiply the given mass of O2 by the inverse of it's molar mass. multiply the molar ratio (from the balanced equation) between O2 and MgO. Multiply by the molar mass of MgO. 32g O2 x 1 mol O2 ... 32g O2 x 2mol MgO 1mol O2 x 40g MgO. .... 1mol MgO = 80 g.
d. Mg (s) + 2 HCl (aq) produces MgCl 2(aq) + H 2 (g). Where the letter "s" stands for solids, and "g" is for gas and "aq" represents aqueous solution.