Answer:
A. Both in mitosis and meiosis (II)
B. Mitosis
C. In both
D. Meiosis
E. Mitosis
Explanation:
Prior to every case of cell division in both mitosis and meiosis, the cell always ensures to duplicates its contents including its chromosomes. In both cases of cell division, the sister chromatids separates, apart from in meiosis I where homologous chromosomes separates to opposite poles. Only one cellular division occurs in mitosis which is involved in the growth and development of the diploid individual but in meiosis, two divisions takes place in the gametes (both male and female) to ensure that the haploid number of chromosomes is transfered from both parents each to the offspring ensuring a constant diploid offspring. Thus a diploid parent cell always produces a haploid daughter cell in the gametes during meiosis. In mitosis, the daughter cells are always identical to the parents cells.
Answer is Middle Paleozoic era.
Paleozoic era was in 542 Ma - 245 Ma and it has 6 periods as Cambrian, Ordovician, Silurian, Devonian, Carboniferous and Permian.
360-280 Ma - forming of vascular plants with woody tissues, seeds and veins.
430 - 410 Ma - forming of jawed fishes and first amphibians.
420 Ma - forming of scorpions
360 Ma - forming of crustaceans.
Passive transport<span> is a movement of </span>biochemicals<span> and other </span>atomic<span> or </span>molecular<span> substances across </span>cell membranes through <span>concentration gradients</span><span> without need of </span>energy<span> input. Unlike </span>active transport<span>, it does not require an input of cellular energy because it is instead driven by the tendency of the system to grow in </span>entropy<span>. The rate of passive transport depends on the </span>permeability<span> of the cell membrane, which, in turn, depends on the organization and characteristics of the membrane </span>lipids<span> and </span>proteins<span>. The four main kinds of passive transport are simple </span>diffusion<span>, </span>facilitated diffusion<span>, </span>filtration<span>, and </span>osmosis.