Answer:

Step-by-step explanation:
By applying the concept of calculus;
the moment of inertia of the lamina about one corner
is:

where :
(a and b are the length and the breath of the rectangle respectively )


![I_{corner} = \rho [\frac{bx^3}{3}+ \frac{b^3x}{3}]^ {^ a} _{_0}](https://tex.z-dn.net/?f=I_%7Bcorner%7D%20%3D%20%20%5Crho%20%5B%5Cfrac%7Bbx%5E3%7D%7B3%7D%2B%20%5Cfrac%7Bb%5E3x%7D%7B3%7D%5D%5E%20%7B%5E%20a%7D%20_%7B_0%7D)
![I_{corner} = \rho [\frac{a^3b}{3}+ \frac{ab^3}{3}]](https://tex.z-dn.net/?f=I_%7Bcorner%7D%20%3D%20%20%5Crho%20%5B%5Cfrac%7Ba%5E3b%7D%7B3%7D%2B%20%5Cfrac%7Bab%5E3%7D%7B3%7D%5D)

Thus; the moment of inertia of the lamina about one corner is 
False. A reflection over the y-axis would result in: (-8,5)
3/5n - 4/5 = 1/5n....multiply everything by 5 to get rid of the fractions
3n - 4 = n
-4 = n - 3n
-4 = -2n
-4/-2 = n
2 = n <==
Answer:
8
Step-by-step explanation:
18-12
12-X
X=12*12/18
X=8mm