Answer:
Infinite number of solutions.
Step-by-step explanation:
We are given system of equations
![5x+4y+5z=-1](https://tex.z-dn.net/?f=%205x%2B4y%2B5z%3D-1)
![x+y+2z=1](https://tex.z-dn.net/?f=x%2By%2B2z%3D1)
![2x+y-z=-3](https://tex.z-dn.net/?f=2x%2By-z%3D-3)
Firs we find determinant of system of equations
Let a matrix A=
and B=![\left[\begin{array}{ccc}-1\\1\\-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%5C%5C1%5C%5C-3%5Cend%7Barray%7D%5Cright%5D)
![\mid A\mid=\begin{vmatrix}5&4&5\\1&1&2\\2&1&-1\end{vmatrix}](https://tex.z-dn.net/?f=%5Cmid%20A%5Cmid%3D%5Cbegin%7Bvmatrix%7D5%264%265%5C%5C1%261%262%5C%5C2%261%26-1%5Cend%7Bvmatrix%7D)
![\mid A\mid=5(-1-2)-4(-1-4)+5(1-2)=-15+20-5=0](https://tex.z-dn.net/?f=%5Cmid%20A%5Cmid%3D5%28-1-2%29-4%28-1-4%29%2B5%281-2%29%3D-15%2B20-5%3D0)
Determinant of given system of equation is zero therefore, the general solution of system of equation is many solution or no solution.
We are finding rank of matrix
Apply
and ![R_3\rightarrow R_3-2R_2](https://tex.z-dn.net/?f=%20R_3%5Crightarrow%20R_3-2R_2)
:![\left[\begin{array}{ccc}-5\\1\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C1%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Apply![R_2\rightarrow R_2-R_1](https://tex.z-dn.net/?f=%20R_2%5Crightarrow%20R_2-R_1)
:![\left[\begin{array}{ccc}-5\\6\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C6%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Apply ![R_3\rightarrow R_3+R_2](https://tex.z-dn.net/?f=%20R_3%5Crightarrow%20R_3%2BR_2)
:![\left[\begin{array}{ccc}-5\\6\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C6%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
Apply
and ![R_2\rightarrow R_2-R_3](https://tex.z-dn.net/?f=%20R_2%5Crightarrow%20R_2-R_3)
:![\left[\begin{array}{ccc}-5\\\frac{13}{2}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C%5Cfrac%7B13%7D%7B2%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Apply ![R_1\rightarrow R_1-R_3](https://tex.z-dn.net/?f=R_1%5Crightarrow%20R_1-R_3)
:![\left[\begin{array}{ccc}-\frac{9}{2}\\\frac{13}{2}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B9%7D%7B2%7D%5C%5C%5Cfrac%7B13%7D%7B2%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Rank of matrix A and B are equal.Therefore, matrix A has infinite number of solutions.
Therefore, rank of matrix is equal to rank of B.
-- sitting erect, shoulders back, chest out, head up, spine straight
-- pen held loosely and comfortably in your hand
-- forearm resting lightly on the table
-- digit characters formed neatly and clearly, with uniform size and slant
<em>3 0 9, 0 5 8, 3 0 4</em> .
Answer:
e^(ln x) is just plain x
Step-by-step explanation:
The functions f(x) = e^x and g(x) = ln x are inverses of one another. In other words, one "undoes" the other.
Thus, as the rule goes, e^(ln x) is just plain x.
Here, e^(ln x) = 4 simplifies to x = 4.
Answer:
C
Step-by-step explanation:
1. Identfiy The type therom it is which is alternate interior
2. Find the converse of the alternate interior which is the oppoiste so it has to be alternate exterior angle