Simultaneous equations can be solved using inverse matrix operation.
The complete steps of Jacob's solution are:
![\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]^{-1} \cdot \left[\begin{array}{cc}4&1\\-2&3\end{array}\right]\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14}\left[\begin{array}{cc}3&-1\\2&4\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-1%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{cc}4&1\\-2&3\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14} \left[\begin{array}{c}28&-84\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D28%26-84%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{c}2&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-6%5Cend%7Barray%7D%5Cright%5D)
We have:


Calculate the determinant of ![\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D)



So, the inverse matrix becomes
![A = \frac{1}{14}\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D)
Replace the first column with
to calculate the value of x
![x = \frac{1}{14}\left[\begin{array}{cc}2&1\\-22&3\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C-22%263%5Cend%7Barray%7D%5Cright%5D)
So, we have:




Replace the second column with
to calculate the value of y
![y = \frac{1}{14}\left[\begin{array}{cc}4&2\\-2&-22\end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%262%5C%5C-2%26-22%5Cend%7Barray%7D%5Cright%5D)
So, we have:




Hence, the complete process is:
![\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]^{-1} \cdot \left[\begin{array}{cc}4&1\\-2&3\end{array}\right]\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14}\left[\begin{array}{cc}3&-1\\2&4\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-1%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{cc}4&1\\-2&3\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14} \left[\begin{array}{c}28&-84\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D28%26-84%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{c}2&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-6%5Cend%7Barray%7D%5Cright%5D)
Read more about matrices at:
brainly.com/question/11367104
lxwxh = v 2 x 2 x 2 = 8 7x8=56 Answer: 7
The answer is b hopefully I helped
Given that the table shows the total miles Uyen has run this week.
The image of the table is attached below.
The total distance from the table is 
The total distance this week is 1.5 times the distance that she ran last week.
We need to determine the number of miles that Uyen run last week.
<u>The number of miles Uyen run last week:</u>
Let x denote the number of miles that Uyen run last week.
Let us write the equation from the given data.
Thus, we have;

Dividing both sides by 1.5, we have;

Hence, the value of x is 14.8 miles.
Thus, Uyen ran 14.8 miles last week.
I hope this helps you
x (q+1)=r
x=r/(q+1)