Answer:
- number of multiplies is n!
- n=10, 3.6 ms
- n=15, 21.8 min
- n=20, 77.09 yr
- n=25, 4.9×10^8 yr
Step-by-step explanation:
Expansion of a 2×2 determinant requires 2 multiplications. Expansion of an n×n determinant multiplies each of the n elements of a row or column by its (n-1)×(n-1) cofactor determinant. Then the number of multiplies is ...
mpy[n] = n·mp[n-1]
mpy[2] = 2
So, ...
mpy[n] = n! . . . n ≥ 2
__
If each multiplication takes 1 nanosecond, then a 10×10 matrix requires ...
10! × 10^-9 s ≈ 0.0036288 s ≈ 0.004 s . . . for 10×10
Then the larger matrices take ...
n=15, 15! × 10^-9 ≈ 1307.67 s ≈ 21.8 min
n=20, 20! × 10^-9 ≈ 2.4329×10^9 s ≈ 77.09 years
n=25, 25! × 10^-9 ≈ 1.55112×10^16 s ≈ 4.915×10^8 years
_____
For the shorter time periods (less than 100 years), we use 365.25 days per year.
For the longer time periods (more than 400 years), we use 365.2425 days per year.
Using Pythagorean theorem





Answer:
in my opinion I think the answer is a because I don't know why
Step-by-step explanation:
Answer:
D. unfavorable fixed overhead flexible minus budget variance
Step-by-step explanation:
As the cost of the equipment is increasing the fixed efficiency and idle capacity variance would be unfavorable resulting in an unfavorable fixed overhead flexible minus budget variance.
The expenses of the machinery are the fixed indirect costs which result in fixed overhead variances. Since it is related to the working of the machinery it would result in efficiency and idle capacity variances that in turn would give unfavorable fixed overhead of the flexible minus budget variance.
Answer:
X = 0.9
Step-by-step explanation:
