The height distribution of NBA players follows a normal distribution with a mean of 79 inches and standard deviation of 3.5 inch
es. What would be the sampling distribution of the mean height of a random sample of 16 NBA players?
1 answer:
Answer:
The probability will be "0.0111".
Step-by-step explanation:
The given values are:
Mean,
= 79
Standard deviation,
= 3.5
Now,
⇒ 


⇒ 
So,
= ![1 - P{\frac{(\bar x - \mu \bar x )}{ \sigma \bar x} < \frac{(81 - 79) }{0.875} ]](https://tex.z-dn.net/?f=1%20-%20P%7B%5Cfrac%7B%28%5Cbar%20x%20-%20%5Cmu%20%5Cbar%20x%20%29%7D%7B%20%5Csigma%20%5Cbar%20x%7D%20%20%3C%20%5Cfrac%7B%2881%20-%2079%29%20%7D%7B0.875%7D%20%5D)
= 
= 
You might be interested in
Answer:
y-6=5(x-(-9))
Step-by-step explanation:
y=5x+51 if u need y=mx+b. Plug and chug basically
Answer:
x=3,y=1
Step-by-step explanation:
2^x+y=16,3^x-y=9
16=2^4,9=3^2
x+y=4,x-y=2 add both
2x=6,x=3
3-y=2,y=1
Answer:
y + 9 = 6(x - 4)
Step-by-step explanation:
Answer:
1
Step-by-step explanation:
:)