Answer:
it is similar- this ~ squiggly thing means similar
Step-by-step explanation:
the scale is 3 so x=3.8*3 which is <u>11.4</u>
<u />
hope this helped
First, convert all of the cm measurements to m measurements (so they are all the same unit measurement)
2000 cm = 20 m 800 cm = 8m
<u>Total Perimeter </u>(Note that circumference of a semi-circle is 2 π r/2 = π r)
Add up the lengths of all of the outside edges. I am going to start on the top and move counter-clockwise:
40 + π (10) + 8 + 25 + 8 + (40 - 25 - 10) + 8 + 10 + 8 + π(10)
= 40 + 10π + 41 + (5) + 26 + 10π
= 112 + 20π
= 112 + 62.8
= 174.8
Answer: 174.8 m
<u>Total Area</u>
Split the picture into 5 sections (2 semi-circles, top rectangle, bottom left rectangle, and bottom right rectangle). Find the area for each of those sections and then add their areas together to find the total area.
2 semi-circles is 1 Circle: A = π · r² ⇒ A = π(20/2)² = π(10)² = 100π ≈ 314
top rectangle: A = L x w ⇒ A = 40 x 20 = 800
bottom left rectangle: A = L x w ⇒ A = 25 x 8 = 200
bottom right rectangle: A = L x w ⇒ A = 10 x 8 = 80
Total = 314 + 800 + 200 + 80 = 1394
Answer: 1394 m²
<span>2x - 3y - z
Substitute the variables for the numbers provided for them
</span><span>2(-2) - 3(3) - (-2)
Multiply 2 by -2
-4 - 3(3) - (-2)
Multiply -3 by 3
-4 - 9 - (-2)
Subtract 9 from -4
-13 - (-2)
Convert Subtract -2 from -13. It would be the same as adding 2 to -13.
Final Answer: -11</span>
A system of equations with infinitely many solutions is a system where the two equations are identical. The lines coincide. Anything that is equal to

will work. You could try multiply the entire equation by some number, or moving terms around, or adding terms to both sides, or any combination of operations that you apply to the entire equation.
You could multiply the whole thing by 4.5 to get

. If you want, you could mix things up and write it in slope-intercept form:

. The point is, anything that is equivalent to the original equation will give infinitely many solutions x and y. You can test this by plugging in values x and y and seeing the answers!
The attached graph shows that four different equations are really the same.
Answer:
Work study
Step-by-step explanation:
I did that question.