Answer:
a2=12 (the second term of the sequence is 12)
Step-by-step explanation:
a5=324
If the term to term rule is multiply by any number, we deal with geometrical sequence
The formula you should use is an= a1*r^(n-1) where n is the number of the term which we know. In our case we know
a5, so use 5 instead of n
Then you have a5=a1*r^4 where r is the number 3 (because each next term is greater than previous in 3 times)
a5=324
324= a1*3^4
324=a1*81
a1=4 (We find the first term of sequence, because having it you can easily search for every term )
Return to the formula an= a1*r^n-1
Now search for the second term using 2 instead of n in the formula
a2= a1*r^1
a2=a1*r, a1=4, r=3
a2=4*3=12
Answer:
7(3a + 5)
Step-by-step explanation:
Rewrite 21 as 7 · 3
Rewrite 35 as 7 · 5
Therefore,
⇒ 21a + 35 = 7 · 3a + 7 · 5
Factor out common term 7:
⇒ 7 · 3a + 7 · 5 = 7(3a + 5)
<span>percent of 64 is 8 means number/100 * 64 = 8.n/100 * 64 = 8n/100 = 8/64n = 8*100/64 = 25/2 = 12.58 is 12.5% of 64</span>
Answer:
The sample space for selecting the group to test contains <u>2,300</u> elementary events.
Step-by-step explanation:
There are a total of <em>N</em> = 25 aluminum castings.
Of these 25 aluminum castings, <em>n</em>₁ = 4 castings are defective (D) and <em>n</em>₂ = 21 are good (G).
It is provided that a quality control inspector randomly selects three of the twenty-five castings without replacement to test.
In mathematics, the procedure to select k items from n distinct items, without replacement, is known as combinations.
The formula to compute the combinations of k items from n is given by the formula:

Compute the number of samples that are possible as follows:


The sample space for selecting the group to test contains <u>2,300</u> elementary events.
Answer:
The perimeter (to the nearest integer) is 9.
Step-by-step explanation:
The upper half of this figure is a triangle with height 3 and base 6. If we divide this vertically we get two congruent triangles of height 3 and base 3. Using the Pythagorean Theorem we find the length of the diagonal of one of these small triangles: (diagonal)^2 = 3^2 + 3^2, or (diagonal)^2 = 2*3^2.
Therefore the diagonal length is (diagonal) = 3√2, and thus the total length of the uppermost two sides of this figure is 6√2.
The lower half of the figure has the shape of a trapezoid. Its base is 4. Both to the left and to the right of the vertical centerline of this trapezoid is a triangle of base 1 and height 3; we need to find the length of the diagonal of one such triangle. Using the Pythagorean Theorem, we get
(diagonal)^2 = 1^2 + 3^2, or 1 + 9, or 10. Thus, the length of each diagonal is √10, and so two diagonals comes to 2√10.
Then the perimeter consists of the sum 2√10 + 4 + 6√2.
which, when done on a calculator, comes to 9.48. We must round this off to the nearest whole number, obtaining the final result 9.