Answer:
Step-by-step explanation:
<em>Answer: h = 120 ft; w = 80 ft </em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
<em>Step-by-step explanation: Let h and w be the dimensions of the playground. The area is given by:</em>
<em></em>
<em>A = h*w (eq1)</em>
<em></em>
<em>The total amount of fence used is:</em>
<em></em>
<em>L = 2*h + 2*w + w (eq2) (an extra distance w beacuse of the division)</em>
<em></em>
<em>Solving for w:</em>
<em></em>
<em>w = L - 2/3*h = 480 - 2/3*h (eq3) Replacing this into the area eq:</em>
<em></em>
<em></em>
<em></em>
<em>We derive this and equal zero to find its maximum:</em>
<em></em>
<em> Solving for h:</em>
<em></em>
<em>h = 120 ft. Replacing this into eq3:</em>
<em></em>
<em>w = 80ft</em>
<em></em>
<em>Therefore the maximum area is:</em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
<h2>
Hello!</h2>
The answer is:
The correct option is the third option,

<h2>
Why?</h2>
From the statement we know the function that models the population growth over the years (p(x)) but we have been told that there is an estimated loss that can be modeled by the function L(p), so in order to find which function represents the final function, we need to composite the function, which is the same that evaluate p(x) into the function L(p).
We are given:

and

So, the evaluationg p(x) into L(p), we have:

Hence, the correct option is:
The third option,

Have a nice day!
9514 1404 393
Answer:
-13/11
Step-by-step explanation:
Straightforward evaluation of the expression at x=1 gives (1 -1)/(1 -1) = 0/0, an indeterminate form. So, L'Hopital's rule applies. The ratio of derivatives is ...
![\displaystyle\lim_{x\to 1}\dfrac{n}{d}=\dfrac{n'}{d'}=\left.\dfrac{\dfrac{4}{3\sqrt[3]{4x-3}}-\dfrac{7}{2\sqrt{7x-6}}}{\dfrac{5}{2\sqrt{5x-4}}-\dfrac{2}{3\sqrt[3]{2x-1}}}\right|_{x=1}=\dfrac{4/3-7/2}{5/2-2/3}=\dfrac{8-21}{15-4}\\\\=\boxed{-\dfrac{13}{11}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%5Cto%201%7D%5Cdfrac%7Bn%7D%7Bd%7D%3D%5Cdfrac%7Bn%27%7D%7Bd%27%7D%3D%5Cleft.%5Cdfrac%7B%5Cdfrac%7B4%7D%7B3%5Csqrt%5B3%5D%7B4x-3%7D%7D-%5Cdfrac%7B7%7D%7B2%5Csqrt%7B7x-6%7D%7D%7D%7B%5Cdfrac%7B5%7D%7B2%5Csqrt%7B5x-4%7D%7D-%5Cdfrac%7B2%7D%7B3%5Csqrt%5B3%5D%7B2x-1%7D%7D%7D%5Cright%7C_%7Bx%3D1%7D%3D%5Cdfrac%7B4%2F3-7%2F2%7D%7B5%2F2-2%2F3%7D%3D%5Cdfrac%7B8-21%7D%7B15-4%7D%5C%5C%5C%5C%3D%5Cboxed%7B-%5Cdfrac%7B13%7D%7B11%7D%7D)