Answer:
Temperature measures the average kinetic energy of the particles in a substance. Thermal energy measures the total kinetic energy of the particles in a substance. The greater the motion of particles, the higher a substance's temperature and thermal energy.
Explanation:
Density= mass/volume
step one :
convert m3 to ml
1m^3 =1000000ml
0.250m^3 x1000000=250000ml
step two: convert mg to g
1mg=0.001g, therefore 4.25 x108mg=0.459g
density is therefore= 0.459g/250000=1.836 x10^-6g/ml
[Co(NH₃)₅Br]²⁺
Ligands and charges on them,
5 × NH₃ = 5 × 0 = 0
1 × Br⁻¹ = 1 × -1 = -1
Charge on sphere = +2
So, putting values in equation,
Co + (0)₅ - 1 = +2
Co + 0 - 1 = +2
Co - 1 = +2
Co = +2 + 1
Co = +3
Result:
Oxidation state of Co in [Co(NH₃)₅Br]²⁺ is +3.
The correct answer is carbon dioxide and water vapor
These negative gasses get modified and then remain in the atmosphere without the possibility of leaving, which is why the greenhouse effect occurs.
Molality is one way of expressing concentration of a solute in a solution. It is expressed as the mole of solute per kilogram of the solvent. To calculate for the molality of the given solution, we need to convert the mass of solute into moles and divide it to the mass of the solvent.
Molality = 29.5 g glucose (1 mol / 180.16 g ) / .950 kg water
Molality = 0.1724 mol / kg