Given-
Hydrogen ion concentration pH = 0.008
Now,
we know that pH + pOH = 14
pOH = 14-0.008
pOH = 13.992
Answer:
the scientific study of the relations between heat and other forms of energy
Answer:
1.32 moles.
Explanation:
From the question given above, the following data were obtained:
Density of Al = 2.70 g/cm³
Volume of Al = 13.2 cm³
Number of mole of Al =.?
Next, we shall determine the mass of Al.
This can be obtained as follow:
Density of Al = 2.70 g/cm³
Volume of Al = 13.2 cm³
Mass of Al =?
Density = mass / volume
2.7 = mass of Al / 13.2
Cross multiply
Mass of Al = 2.7 × 13.2
Mass of Al = 35.64 g
Finally, we shall determine the number of mole of Al. This can be obtained as follow:
Mass of Al = 35.64 g
Molar mass of Al = 27 g/mol
Number of mole of Al =?
Mole = mass / molar mass
Number of mole of Al = 35.64 / 27
Number of mole of Al = 1.32 moles
Thus, 1.32 moles of aluminum are present in the block of the metal.
1. <em>Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period. </em>
<em>2. Physical state of the reactants and surface area.</em>
Answer: D) 1.00 g
Explanation:
According to the Avogadro's law, the volume of gas is directly proportional to the number of moles of gas at same pressure and temperature. That means,

or,

where,
= initial volume of gas = 2.00 L
= final volume of gas = 3.00 L
= initial moles of gas =
= final moles of gas = ?
Now we put all the given values in this formula, we get


Mass of helium =
Thus mass of helium added = (3.00-2.00) g = 1.00 g