Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
Answer:
16.05 amu
Explanation:
12.011 rounds to about 12.01 and 1.008 rounds to about 1.01 so when adding you'd do [12.01 + (1.01×4)]= 16.05
Explanation:
The more reactive element replaces less reactive element during chemical reaction.
Since, potassium is more reactive than beryllium. When potassium reacts with beryllium choride, it replaces beryllium and forms potassium chloride and produces beryllium.
No its a example of heterogeneous mixture