Answer:
the answer is x >0 hope this helped
I think its B because, the formation would be (x,y) so that means (5,-3)
<em><u>QUESTION</u></em><em><u> </u></em><em><u>-</u></em><em><u>></u></em><em><u> </u></em><em><u>{</u></em><em><u>WHICH</u></em><em><u> </u></em><em><u>EQUATION</u></em><em><u> </u></em><em><u>DESCRIBES</u></em><em><u> </u></em><em><u>A </u></em><em><u>LINEAR </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>FUNCTION</u></em><em><u> </u></em><em><u>}</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em> </em><em> </em><em> </em>
<h2>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>?</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em></h2>
<em><u>ANSWER </u></em><em><u>:</u></em><em><u> </u></em>
<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>B </u></em><em><u>.</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em><u>y </u></em><em><u>=</u></em><em><u>(</u></em><em><u>1</u></em><em><u> </u></em><em><u>—</u></em><em><u> </u></em><em><u>6</u></em><em><u> </u></em><em><u>)</u></em><em><u> </u></em><em><u>×</u></em><em><u> </u></em><em><u> </u></em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em><u> </u></em><em><u> </u></em><em><u>or</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em>
<em><u> </u></em>
<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>C </u></em><em><u>.</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em><u> </u></em><em><u> </u></em><em><u>y </u></em><em><u>=</u></em><em><u> </u></em><em><u>(</u></em><em><u>2</u></em><em><u>)</u></em><em><u> </u></em><em><u>×</u></em>
<em><u>HOPE </u></em><em><u>IT </u></em><em><u>HELPS </u></em><em><u>.</u></em>
<h2>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em><u>THANK </u></em><em><u>ME </u></em><em><u>LATER </u></em></h2>
<h2>
<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em><u> </u></em><em><u> </u></em><em><u>THANKS</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em></h2>
<em><u> </u></em><em><u> </u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>
The missing term in the provided quadratic equation is 10x if the roots of a quadratic equation are 5 ± 3i.
<h3>What is a complex number?</h3>
It is defined as the number which can be written as x+iy where x is the real number or real part of the complex number and y is the imaginary part of the complex number and i is the iota which is nothing but a square root of -1.
The question is incomplete.
The complete question is in the picture, please refer to the attached picture.
We have the roots of a quadratic equation:
5 ± 3i
To find the quadratic equation:
(x - (5+3i))(x - (5-3i))

= x² -10x + 34
The missing value is 10x
The quadratic equation is:
= x² -10x + 34
Thus, the missing term in the provided quadratic equation is 10x if the roots of a quadratic equation are 5 ± 3i.
Learn more about the complex number here:
brainly.com/question/10251853
#SPJ1
Answer:
Length of Chord QS = 33
Step-by-step explanation:
<u>Length of Chord QS</u>:
QW X WS = PW = WR
12(4x + 1) = 14(3x + 3)
48x + 12 = 42x + 42
48x - 42x = 42 - 12
6x = 30
x =
= 5
∴ Length of Chord QS = 12 + 4(5) + 1 = 13 + 20 = 33
The intersecting chords theorem or just The chord theorem is a statement in elementary geometry that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. Each chord is cut into two segments at the point of where they intersect. One chord is cut into two line segments A and B. The other into the segments C and D. This theorem states that A×B is always equal to C×D no matter where the chords are.