If a repressor protein attaches to the operator, RNA polymerase cannot proceed to transcribe key enzymes needed by the organism. This can be seen in the trp operon in E .coli bacteria.
Answer:
A.Glycogenesis: Glycogen synthase
B. Glucogenesis: Fructose 1,6 biphosphate phosphatase
C. Urea cycle : Carbamoyl phosphate synthetase
D.Fatty acid synthesis: Acetyl CoA carboxylase
E.Glycolysis : Phosphofructokinase 1
F. Pentose phosphate pathway: Glucose-6-phosphate dehydrogenase
Explanation:
A. Glycogen synthase converts glucose into glycogen during glycogenesis.
B. Fructose 1,6 biphosphate phosphatase catalyzes condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate during glucogenesis.
C. Carbamoyl phosphate synthetase I catalyses production of arbamoyl phosphate during urea cycle.
D. Carboxylase controls fatty acid metabolism.
E. The phosphofructokinase 1 is an important enzyme that regulate formation of two-phosphate sugar molecules during glycolysis.
F. Glucose-6-phosphate dehydrogenase participates in the pentose phosphate pathway. This pathway gives reducing energy to cells.
Answer:
The new cells are the same as the previous ones, since they are the result of the mitosis process.
Explanation:
When we cut our skin, our brain sends information to millions of cells to take action and prevent this cut from putting us in danger. At that moment, the blood cells begin their work, supplying enough oxygen to stop possible bleeding and start the healing process. Then another group of cells swap out possible bacteria that may be trying to get into the wound. Last but not least, skin cells enter cell division and undergo mitosis, to generate new cells and create a new skin layer.
New cells are the same as old cells, as they are the result of mitosis. Mitosis is the process of cell division where one cell gives rise to two cells exactly the same as it.
Bright sunlight, lack of competitors, and more carbon dioxide