1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
3 years ago
5

Please help me write this equation​

Mathematics
1 answer:
tatuchka [14]3 years ago
5 0
The answer is, y = -1/3 - 3
You might be interested in
Visitors to a carnival can buy an unlimited-ride pass for 50$ or an entrance-only pass for 20$. In one day, 282 passss were sold
olchik [2.2K]
20*282= 5640
10680-5640=5040
50-20=30
5040 dividend by 30= 168
Answer: 168
6 0
3 years ago
Find the perimeter (add all sides) of a square when side a= - 41x²
Dafna11 [192]

Answer:

-164x^2

Step-by-step explanation:

The Perimeter of a square is 4s where s is the length of 1 side.

So P=4(-41x^2) 41*4=164 ----> P=-164x^2

5 0
3 years ago
Please answer asap!!!! will mark brainiest
Inga [223]

Answer:

x=2

Step-by-step explanation:

We know the only number that gets us back to 0 after subtracting 4 is 4, because 4-4=0. The square root of 4 is 2. Hope my explanation wasn't too confusing!

2²=4

4-4=0

3 0
3 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Let's Create
Cerrena [4.2K]

Answer:

.

1) 1/4+___=7/12

2) 5/8-___= -3/8

3) 1/3÷___= 1/9

4) (2.1)(____)=0.63

value

3 0
2 years ago
Other questions:
  • Solve this clue: <br> My age is 10 more than one-tenth of one-tenth of 3,000
    14·1 answer
  • Find the Surface Area of a cylinder with a base radius of 2 cm and a height of 3 cm. Use pi = 3.14
    8·2 answers
  • Mr Blake is packing 79 books into boxes. He can pack 12 books in each box. How many boxes does he need?
    14·2 answers
  • What is the top price of $45.09 item when 7% sales tax is added
    8·1 answer
  • A swimmer completes 8 laps in 1/4 hour. What is the swimmer’s rate per hour ?
    12·2 answers
  • How do you find the slope and the y intercept for y= 12-2/3x
    13·1 answer
  • What’s 1 Apple plus 1 apple
    15·2 answers
  • Can someone help please and (if you can)explain how to get the answer pls
    12·1 answer
  • 3 to the power of 4 +9
    7·2 answers
  • I need help with this problem
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!