1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivahew [28]
3 years ago
14

Giving brainliest !!!

Mathematics
1 answer:
PIT_PIT [208]3 years ago
7 0

Answer:

u multiply!

Step-by-step explanation:

You might be interested in
Think about the function f(x) = 10-X.
Harrizon [31]

Answer:

X is the input.

8 0
3 years ago
I need help with this
Sloan [31]
That equals 27 hope this helps
3 0
3 years ago
Please do not send me p d f s or links
Sedbober [7]

Answer:I know you said no PDFs but I know this site that can help you. Just search up ‘Desciptive Statistics Calculator’ it can help you a lot

Step-by-step explanation:

7 0
3 years ago
Work out the gradient of the graph shown.
icang [17]

y=-3 and then x=-1 =-3:-1

4 0
2 years ago
Determine consecutive integer values of x between which each real zero is located.
frozen [14]

Answer:

1. x = -2 or x = sqrt(6) - 2 or x = -2 - sqrt(6)

2. x = -2.10947 or x = -0.484343 or x = 1.67884 or x = 2.91497

Step-by-step explanation:

Solve for x:

x^3 + 6 x^2 + 6 x - 4 = 0

The left hand side factors into a product with two terms:

(x + 2) (x^2 + 4 x - 2) = 0

Split into two equations:

x + 2 = 0 or x^2 + 4 x - 2 = 0

Subtract 2 from both sides:

x = -2 or x^2 + 4 x - 2 = 0

Add 2 to both sides:

x = -2 or x^2 + 4 x = 2

Add 4 to both sides:

x = -2 or x^2 + 4 x + 4 = 6

Write the left hand side as a square:

x = -2 or (x + 2)^2 = 6

Take the square root of both sides:

x = -2 or x + 2 = sqrt(6) or x + 2 = -sqrt(6)

Subtract 2 from both sides:

x = -2 or x = sqrt(6) - 2 or x + 2 = -sqrt(6)

Subtract 2 from both sides:

Answer: x = -2 or x = sqrt(6) - 2 or x = -2 - sqrt(6)

_________________________________________

Solve for x:

x^4 - 2 x^3 - 6 x^2 + 8 x + 5 = 0

Eliminate the cubic term by substituting y = x - 1/2:

5 + 8 (y + 1/2) - 6 (y + 1/2)^2 - 2 (y + 1/2)^3 + (y + 1/2)^4 = 0

Expand out terms of the left hand side:

y^4 - (15 y^2)/2 + y + 117/16 = 0

Subtract -3/2 sqrt(13) y^2 - (15 y^2)/2 + y from both sides:

y^4 + (3 sqrt(13) y^2)/2 + 117/16 = (3 sqrt(13) y^2)/2 + (15 y^2)/2 - y

y^4 + (3 sqrt(13) y^2)/2 + 117/16 = (y^2 + (3 sqrt(13))/4)^2:

(y^2 + (3 sqrt(13))/4)^2 = (3 sqrt(13) y^2)/2 + (15 y^2)/2 - y

Add 2 (y^2 + (3 sqrt(13))/4) λ + λ^2 to both sides:

(y^2 + (3 sqrt(13))/4)^2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = -y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2

(y^2 + (3 sqrt(13))/4)^2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = (y^2 + (3 sqrt(13))/4 + λ)^2:

(y^2 + (3 sqrt(13))/4 + λ)^2 = -y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2

-y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = (2 λ + 15/2 + (3 sqrt(13))/2) y^2 - y + (3 sqrt(13) λ)/2 + λ^2:

(y^2 + (3 sqrt(13))/4 + λ)^2 = y^2 (2 λ + 15/2 + (3 sqrt(13))/2) - y + (3 sqrt(13) λ)/2 + λ^2

Complete the square on the right hand side:

(y^2 + (3 sqrt(13))/4 + λ)^2 = (y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)))^2 + (4 (2 λ + 15/2 + (3 sqrt(13))/2) (λ^2 + (3 sqrt(13) λ)/2) - 1)/(4 (2 λ + 15/2 + (3 sqrt(13))/2))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 15/2 + (3 sqrt(13))/2) (λ^2 + (3 sqrt(13) λ)/2) - 1 = 8 λ^3 + 18 sqrt(13) λ^2 + 30 λ^2 + 45 sqrt(13) λ + 117 λ - 1 = 0.

Thus the root λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + (3 sqrt(13))/4 + λ)^2 = (y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)))^2

Take the square root of both sides:

y^2 + (3 sqrt(13))/4 + λ = y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)) or y^2 + (3 sqrt(13))/4 + λ = -y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) + 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2))

Solve using the quadratic formula:

y = 1/4 (sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) + sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 - 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) or y = 1/4 (sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) - sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 - 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) or y = 1/4 (sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 + 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13))) - sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13))) or y = 1/4 (-sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) - sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 + 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) where λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3))

Substitute λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3)) and approximate:

y = -2.60947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x - 1/2 = -2.60947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x - 1/2 = -0.984343 or y = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or x = -0.484343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x = -0.484343 or x - 1/2 = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or x = -0.484343 or x = 1.67884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x = -0.484343 or x = 1.67884 or x - 1/2 = 2.41497

Add 1/2 to both sides:

Answer: x = -2.10947 or x = -0.484343 or x = 1.67884 or x = 2.91497

8 0
3 years ago
Other questions:
  • Identify the restrictions on the domain of f(x) = quantity x plus 5 over quantity x minus 2. x ≠ 5 x ≠ −5 x ≠ 2 x ≠ −2
    8·1 answer
  • A colored chip is yellow on one side and red on the other. The chip was flipped 50 times and landed on red side up 22 times. Wha
    8·1 answer
  • 100 points. Easy question. <br><br> Topic: Fractions.<br><br> ONLY COMPLETE QUESTION 1
    15·2 answers
  • I need help on this <br> 5x+x-4
    8·2 answers
  • What’s the answer? <br> A.<br> B.<br> C.<br> D.
    7·2 answers
  • Does anyone know how to do this ?
    10·1 answer
  • √6 + √30 <br><br> √36 + √36<br><br> √ - Square Root<br><br> Pls help :(
    15·1 answer
  • Get the product using FOIL method: (x+2)(x+3)
    13·1 answer
  • Volume with fractions 3 28 points
    7·1 answer
  • Three is subtracted from the product of a certain number and 6. This produces the same value as when 11 is added to the product
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!