Answer:
Its A or the first option
Step-by-step explanation:
good luck
The answer to your question is the first option! Hope this helps. God bless
The volume of a square pyramid is (1/3)(area of base)(height of pyramid).
Here the area of the base is (10 ft)^2 = 100 ft^2.
13 ft is the height of one of the triangular sides, but not the height of the pyramid. To find the latter, draw another triangle whose upper vertex is connected to the middle of one of the four equal sides of the base by a diagonal of length 13 ft. That "middle" is 5 units straight down from the upper vertex. Thus, you have a triangle with known hypotenuse (13 ft) and known opposite side 5 feet (half of 10 ft). What is the height of the pyramid?
To find this, use the Pyth. Thm.: (5 ft)^2 + y^2 = (13 ft)^2. y = 12 ft.
Then the vol. of the pyramid is (1/3)(area of base)(height of pyramid) =
(1/3)(100 ft^2)(12 ft) = 400 ft^3 (answer)
Answer:
there is no greatest load
Step-by-step explanation:
Let x and y represent the load capacities of my truck and my neighbor's truck, respectively. We are given two relations:
x ≥ y +600 . . . . . my truck can carry at least 600 pounds more
x ≤ (1/3)(4y) . . . . . my truck carries no more than all 4 of hers
Combining these two inequalities, we have ...
4/3y ≥ x ≥ y +600
1/3y ≥ 600 . . . . . . . subtract y
y ≥ 1800 . . . . . . . . multiply by 3
My truck's capacity is greater than 1800 +600 = 2400 pounds. This is a lower limit. The question asks for an <em>upper limit</em>. The given conditions do not place any upper limit on truck capacity.