Answer:
Age of son = 6 years
Age of man = 5×6 = 30 years
Step-by-step explanation:
<u>GIVEN :-</u>
- A man is 5 times as old as his son. (In Present)
- 4 years ago , the man was 13 times as old as his son
<u>TO FIND :-</u>
- The present ages of the man & his son.
<u>SOLUTION :-</u>
Let the present age of son be 'x'.
⇒ Present age of man = 5x
4 years ago ,
Age of son = (Present age of son) - 4 = x - 4
Age of man = (Present age of man) - 4 = 5x - 4
The man was thirteen times as old as his son. So,

Now , solve the equation.
- Open the brackets in R.H.S.

- Take 5x to R.H.S. and -52 to L.H.S. Also , take care of their signs because they are getting displaced from L.H.S. to R.H.S. or vice-versa.


- Divide both the sides by 8


<u>CONCLUSION :-</u>
Age of son = 6 years
Age of man = 5×6 = 30 years
Answer:
B. 8
Step-by-step explanation:
6, 15, 7, 5, 11, 11, 8
5, 6, 7, 8, 11, 11, 15
The middle number is 8.
Answer: FALSE.
Step-by-step explanation:
Given the following equation provided in the exercise:

You need to solve for the variable "x".
In order to solve for "x" you can folllow the steps shown below:
1. You must apply the Addition property of equality and add 13 to both sides of the equation. Then:

2. Finally you need to apply the Subtraction property of equality and subtract "x" from both sides of the equation. So you get:

Therefore, as you can observe, the given equation has no solutions.
The answer would be 1952 because the display of flag makes a right triangle so we will use Pythagorean theorem in order to find the sides and the sides total is 244 according to theorem, so we multiply by 8 to get the 8 flag display. <span />
Answer:
The system of inequalities is
y\geq 3x-2
y<-(1/5)x+2
Step-by-step explanation:
step 1
Find the equation of the solid blue line
Let
A(0,-2), B(1,1)
Find the slope of AB
m=(1+2)/(1-0)=3
The equation of the line into slope intercept form is equal to
y=mx+b
we have
m=3
b=-2 - ----> the point A is the y-intercept
substitute
y=3x-2 - -----> equation of the solid blue line
The solution of the inequality is the shaded area above the solid line
therefore
The first inequality is
y\geq 3x-2
C(0,2), D(5,1)
step 2
Find the equation of the dashed red line
Let
Find the slope of CD
m=(1-2)/(5-0)=-1/5
The equation of the line into slope intercept form is equal to
y=mx+b
we have
m=-1/5
b=2 ----> the point C is the y-intercept
substitute
y=-(1/5)x+2 -----> equation of the dashed red line
The solution of the inequality is the shaded area below the dashed line
therefore
The second inequality is
y<-(1/5)x+2
The system of inequalities is
y\geq 3x-2
y<-(1/5)x+2