Solution:
The process of transaction can guarantee the reliability of business applications. Locking resources is widely used in distributed transaction management (e.g; two phase commit, 2PC) to keep the system consistent. The locking mechanism, however, potentially results in various deadlocks. In service oriented architecture, the deadlock problem becomes even worse because multiple transactions try to lock shared resources in the unexpectable way due to the more randomicity of transaction requests, which has not been solved by existing research results. In this paper, we investigate how to prevent local deadlocks, caused by the resource competition among multiple sub-transactions of a gl obal transaction, and global deadlocks from the competition among different global transactions. We propose a replication based approach to avoid the local deadlocks, and a timestamp based approach to significantly mitigate the global deadlocks. A general algorithm is designed for both local and global deadlock prevention. The experimental results demonstrate the effectiveness and efficiency of our deadlock prevention approach. Further, it is also proved that our approach provides higher system performance than traditional resource allocation schemes.
This is the required answer.
Answer:
Options A and C.
Explanation:
In Oracle Cloud Infrastructure the two options which allows you to increase disk performance are;
1. Terminate the compute instance preserving the boot volume. Create a new compute instance using a VM Dense IO shape using the boot volume preserved.
2. Create a backup of the boot volume. Create a new compute instance a VM Dense IO shape and restore the backup.
Answer:
Well you can use bluetooth since it doesn’t require wifi and it would still work if your printing a file from your computer or your flash drive.
Depends
such as if the molecule in the water is hot then the molecules of the sugar would dissolve faster since the hot water speeds the process.
Cold water molecules would be slower since of course its slows down the reaction when sugar is applied.
Answer:
All functions were written in python
addUpSquaresAndCubes Function
def addUpSquaresAndCubes(N):
squares = 0
cubes = 0
for i in range(1, N+1):
squares = squares + i**2
cubes = cubes + i**3
return(squares, cubes)
sumOfSquares Function
def sumOfSquares(N):
squares = 0
for i in range(1, N+1):
squares = squares + i**2
return squares
sumOfCubes Function
def sumOfCubes(N):
cubes = 0
for i in range(1, N+1):
cubes = cubes + i**3
return cubes
Explanation:
Explaining the addUpSquaresAndCubes Function
This line defines the function
def addUpSquaresAndCubes(N):
The next two lines initializes squares and cubes to 0
squares = 0
cubes = 0
The following iteration adds up the squares and cubes from 1 to user input
for i in range(1, N+1):
squares = squares + i**2
cubes = cubes + i**3
This line returns the calculated squares and cubes
return(squares, cubes)
<em>The functions sumOfSquares and sumOfCubes are extract of the addUpSquaresAndCubes.</em>
<em>Hence, the same explanation (above) applies to both functions</em>