Side 1 = short side = 2x-3
side 2 = longer side = (short side) + 6 = (2x-3)+6 = 2x+3
side 3 = side 2 = 2x+3
Side 2 and side 3 are the longer two congruent sides
Add up the three sides and set them equal to the given perimeter of 33. Solve for x
(side1)+(side2)+(side3) = perimeter
(2x-3)+(2x+3)+(2x+3) = 33
(2x+2x+2x) + (-3+3+3) = 33
6x+3 = 33
6x+3-3 = 33-3
6x = 30
6x/6 = 30/6
x = 5
If x = 5, then the longer sides are 2*x+3 = 2*5+3 = 10+3 = 13 inches each
(note: the short side is 2*x-3=2*5-3=10-3 = 7 inches)
Answer: 13 inches
Answer: Order will be F,D,C and Fourth Option is correct and x = 10
Step-by-step explanation:
Since we have given that

We first transpose the square root to the right , so it becomes square of 8,i.e.

Now, transpose 4 to the right so it will get subtract from 64 i.e.

Since 6 is multiplied to x on tranposing it will get divided by 60 i.e.

Hence, on simplification, we get x=10.
Hence , the order is F,D,C.
Answer:
1/27
plz mark brainest
Step-by-step explanation:
Answer:
jsdcjdvnjkdnjnjdanskcbanknqnjfkrbgiyrwhgondfkv
Step-by-step explanation:
Answer:
The number of elephant ears that must be sold to maximize profit is 400.
Step-by-step explanation:
Given that,
The profit that a vendor makes per day is given by
P(x)= - 0.004x² +3.2 x -200
where x is number of elephant ears.
P(x)= - 0.004x² +3.2 x -200
Differentiating with respect to x
P'(x)= - 0.008x+3.2
Again differentiating with respect to x
P''(x) = -0.008
For maximum or minimum P'(x)=0
- 0.008x+3.2=0
⇒0.008x=3.2

⇒ x = 400

Since at x=400, P''(x)<0, the profit is maximize.
P(400) = -0.004×400²+3.2×400-200
=440
The number of elephant ears that must be sold to maximize profit is 400.