A cube number is an integer which is a third power of another integer.
A triangular number is a number that counts the objects that can form equilateral triangle (sorry, I cribbed it a little from Wikipedia; it's difficult to explain). Just look at the picture.
<span />
Year 1
58054.76=63,103(1-r)^1
Year 2
53,410.38=63103(1-r)^2
1/3 ln(<em>x</em>) + ln(2) - ln(3) = 3
Recall that
, so
ln(<em>x</em> ¹ʹ³) + ln(2) - ln(3) = 3
Condense the left side by using sum and difference properties of logarithms:


Then
ln(2/3 <em>x</em> ¹ʹ³) = 3
Take the exponential of both sides; that is, write both sides as powers of the constant <em>e</em>. (I'm using exp(<em>x</em>) = <em>e</em> ˣ so I can write it all in one line.)
exp(ln(2/3 <em>x</em> ¹ʹ³)) = exp(3)
Now exp(ln(<em>x</em>)) = <em>x </em>for all <em>x</em>, so this simplifies to
2/3 <em>x</em> ¹ʹ³ = exp(3)
Now solve for <em>x</em>. Multiply both sides by 3/2 :
3/2 × 2/3 <em>x</em> ¹ʹ³ = 3/2 exp(3)
<em>x</em> ¹ʹ³ = 3/2 exp(3)
Raise both sides to the power of 3:
(<em>x</em> ¹ʹ³)³ = (3/2 exp(3))³
<em>x</em> = 3³/2³ exp(3×3)
<em>x</em> = 27/8 exp(9)
which is the same as
<em>x</em> = 27/8 <em>e</em> ⁹
Answer:

Step-by-step explanation:
Two lines are given to us which are perpendicular to each other and we need to find out the value of a . The given equations are ,
Step 1 : <u>Conver</u><u>t</u><u> </u><u>the </u><u>equations</u><u> in</u><u> </u><u>slope</u><u> intercept</u><u> form</u><u> </u><u>of</u><u> the</u><u> line</u><u> </u><u>.</u>
and ,
Step 2: <u>Find </u><u>the</u><u> </u><u>slope</u><u> of</u><u> the</u><u> </u><u>lines </u><u>:</u><u>-</u>
Now we know that the product of slope of two perpendicular lines is -1. Therefore , from Slope Intercept Form of the line we can say that the slope of first line is ,
And the slope of the second line is ,
Step 3: <u>Multiply</u><u> </u><u>the </u><u>slopes </u><u>:</u><u>-</u><u> </u>
Multiply ,
Multiply both sides by a ,
Divide both sides by -1 ,
<u>Hence </u><u>the</u><u> </u><u>value</u><u> of</u><u> a</u><u> </u><u>is </u><u>9</u><u> </u><u>.</u>