∑ ( from n = 1 to n =5 ) 3 · ( -2 ) ^( n -1 )
a 1 = 3 · ( -2 ) ^0 = 3
a 2 = 3 · ( - 2 ) = - 6
a 3 = 3 · 4 = 12
a 4 = 3 · ( - 8 ) = - 24
a 5 = 3 · 16 = 48
3 - 6 + 12 - 24 + 48 = 33
Answer: C ) 33
Answer:
15.
x = 40/9 = 4 4/9
z = 24/5 = 4 4/5
17.
x = 50
y ≈ 11.5
Step-by-step explanation:
15. Corresponding segments are proportional:
top right side / whole right side = x / 8
5/(5+4) = x/8
x = 8(5/9) = 40/9
x = 4 4/9
__
right side bottom / right side top = z / 6
z = 6(4/5) = 24/5
z = 4 4/5
____
17. The acute angles are complementary:
x = 90 -40 = 50
__
From the Pythagorean theorem:
y = √(15² -9.6²) = √132.84
y ≈ 11.5
the answer is 44.75 I would explain but ehhhhhhhhhh
To find the area of a square, you multiply the side length by itself. So, multiply 18 feet by 18 feet to get 324 square feet.
Answer:
Measure of angle 2 and angle 4 is 42°.
Step-by-step explanation:
From the figure attached,
m∠ABC = 42°
m(∠ABD) = 90°
m(∠ABD) = m(∠ABC) + m(∠DBC)
90° = 43° + m(∠DBC)
m(∠DBC) = 90 - 43 = 47°
Since ∠ABC ≅ ∠4 [Vertical angles]
m∠ABC = m∠4 = 42°
Since, m∠3 + m∠4 = 90° [Complimentary angles]
m∠3 + 42° = 90°
m∠3 = 90° - 42°
= 48°
Since, ∠5 ≅ ∠3 [Vertical angles]
m∠5 = m∠3 = 48°
m∠3 + m∠2 = 90° [given that m∠2 + m∠3 = 90°]
m∠2 + 48° = 90°
m∠2 = 90 - 48 = 42°
m∠3+ m∠4 = 90° [Since, ∠3 and ∠4 are the complimentary angles]
48° + m∠4 = 90°
m∠4 = 90 - 48 = 42°
Therefore, ∠2 and ∠4 measure 42°.