Answer:
-2 (3x +12 Y -5 -17 X -16 Y +4)
Step-by-step explanation:
omg.. here we go..
-2 (17) i THinK im not sure hope this helped
Answer:
Systolic on right

Systolic on left

So for this case we have more variation for the data of systolic on left compared to the data systolic on right but the difference is not big since 0.170-0.147 = 0.023.
Step-by-step explanation:
Assuming the following data:
Systolic (#'s on right) Diastolic (#'s on left)
117; 80
126; 77
158; 76
96; 51
157; 90
122; 89
116; 60
134; 64
127; 72
122; 83
The coefficient of variation is defined as " a statistical measure of the dispersion of data points in a data series around the mean" and is defined as:

And the best estimator is 
Systolic on right
We can calculate the mean and deviation with the following formulas:
[te]\bar x = \frac{\sum_{i=1}^n X_i}{n}[/tex]

For this case we have the following values:

So then the coeffcient of variation is given by:

Systolic on left
For this case we have the following values:

So then the coeffcient of variation is given by:

So for this case we have more variation for the data of systolic on left compared to the data systolic on right but the difference is not big since 0.170-0.147 = 0.023.
Answer:
The mid-point is (9,-9/2)
Step-by-step explanation:
You would use the mid-point formula for this

if you plug that in it is (
)
resulting in (11/2,-2/2) = (11/2,-1)
Answer:
See below.
Step-by-step explanation:
A good idea would be to write if as:
-x^4 + 0x^3 + 0x^2 + 0x + 1, then you can perform long division.
<h2>
Answer:</h2>
The number of pages he will read in one minute is:

<h2>
Step-by-step explanation:</h2>
It is given that:
Charlie reads
in every
.
We know that:

This means that:
Charlie reads
in every
.
This means that:



Hence,

Hence,

