Answer:
There are two possibilities:
and 
and 
Step-by-step explanation:
Mathematically speaking, the statement is equivalent to this 2-variable non-linear system:


First,
is cleared in the first equation:

Now, the variable is substituted in the second one:

And some algebra is done in order to simplify the expression:


Roots are found by means of the General Equation for Second-Order Polynomials:
and 
There are two different values for
:






There are two possibilities:
and 
and 
Answer:
∠J = 60°
Step-by-step explanation:
The Law of Cosines tells you ...
j² = k² +l² -2kl·cos(J)
Solving for J gives ...
J = arccos((k² +l² -j²)/(2kl))
J = arccos((14² +80² -74²)/(2·14·80)) = arccos(1120/2240) = arccos(1/2)
J = 60°
_____
<em>Additional comment</em>
It is pretty rare to find a set of integer side lengths that result in one of the angles of the triangle being a rational number of degrees.
Answer:
Approximately 6.4
Step-by-step explanation:
We can use the pythagorean thereom here, that tells us (a^2)+(b^2)=c^2. C is the hypotenuse, the side opposite from the right angle, while a and b are the other sides. We can insert 5 and 4 as a and b, and solve for c
:(5^2)+(4^2)=c^2
:25+16=c^2
:41=c^2
:sqrt(41)=6.4=c (We square rooted both sides. 6.4 is only rounded to the nearest hundredths place.) Hope this helps!