Sin(70+80) = sin 150.......................
Let's have the first number, the larger number, be <em>x</em>. We'll have the second, smaller number be <em>y</em>.
We know that x = y + 6, since x is 6 greater than y.
We also know that 330 = x + y.
Because x = y + 6, 330 = y + 6 + y, which simplifies to 330 = 2y + 6.
Now all we need to do is simplify the equation. First, we subtract 6 from both sides:
330 - 6 = 324
2y + 6 - 6 = 2y.
So we have 324 = 2y. Then we divide both sides by 2 to get:
162 = y
Plug in y = 162 into the equation x = y + 6 to get:
x = 162 + 6
x = 168
Let's check to make sure our answer is right. 168 is 6 more than 162. 162 + 168 equals 330. So our two numbers are 168 and 162.
Answer:
9-3x=0
Step-by-step explanation:
Add 3x to both sides
9=3x
divide both sides by 3
3=x
x=3
Answer:
Which Number Is x, You Didnt Specify
Here is our profit as a function of # of posters
p(x) =-10x² + 200x - 250
Here is our price per poster, as a function of the # of posters:
pr(x) = 20 - x
Since we want to find the optimum price and # of posters, let's plug our price function into our profit function, to find the optimum x, and then use that to find the optimum price:
p(x) = -10 (20-x)² + 200 (20 - x) - 250
p(x) = -10 (400 -40x + x²) + 4000 - 200x - 250
Take a look at our profit function. It is a normal trinomial square, with a negative sign on the squared term. This means the curve is a downward facing parabola, so our profit maximum will be the top of the curve.
By taking the derivative, we can find where p'(x) = 0 (where the slope of p(x) equals 0), to see where the top of profit function is.
p(x) = -4000 +400x -10x² + 4000 -200x -250
p'(x) = 400 - 20x -200
0 = 200 - 20x
20x = 200
x = 10
p'(x) = 0 at x=10. This is the peak of our profit function. To find the price per poster, plug x=10 into our price function:
price = 20 - x
price = 10
Now plug x=10 into our original profit function in order to find our maximum profit:
<span>p(x)= -10x^2 +200x -250
p(x) = -10 (10)</span>² +200 (10) - 250
<span>p(x) = -1000 + 2000 - 250
p(x) = 750
Correct answer is C)</span>