Explanation:
The Second Industrial Revolution, also known as the Technological Revolution,[1] was a phase of rapid standardization and industrialization from the late 19th century into the early 20th century. The First Industrial Revolution, which ended in the middle of 19th century, was punctuated by a slowdown in important inventions before the Second Industrial Revolution in 1870. Though a number of its events can be traced to earlier innovations in manufacturing, such as the establishment of a machine tool industry, the development of methods for manufacturing interchangeable parts and the invention of the Bessemer process to produce steel, the Second Industrial Revolution is generally dated between 1870 and 1914 (the beginning of World War I).
Advancements in manufacturing and production technology enabled the widespread adoption of technological systems such as telegraph and railroad networks, gas and water supply, and sewage systems, which had earlier been concentrated to a few select cities. The enormous expansion of rail and telegraph lines after 1870 allowed unprecedented movement of people and ideas, which culminated in a new wave of globalization. In the same time period, new technological systems were introduced, most significantly electrical power and telephones. The Second Industrial Revolution continued into the 20th century with early factory electrification and the production line, and ended at the beginning of World War I.
The Shift to Coal
The advancement of the steam engine dramatically improved the efficiency of coal mining during the Industrial Revolution, making coal a cheaper, more abundant, and easily available source of energy. This resulted in labor conditions that triggered influential unions and in pollution that sparked the environmental movement.
Coal and Coal Mining in Britain
Coal is a combustible black or brownish-black sedimentary rock occurring in layers or veins called coal beds or coal seams. Coal is composed primarily of carbon, along with variable quantities of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. A fossil fuel, coal forms when dead plant matter is converted into peat, which in turn is converted into lignite, then sub-bituminous coal, bituminous coal, and lastly anthracite. This involves biological and geological processes that take place over time.
The history of coal mining goes back thousands of years. Early coal extraction was small-scale, with coal lying either on the surface or very close to it. The early coal mining techniques left considerable amount of usable coal behind. Although some deep mining in Britain took place as early as the 1500s, deep shaft mining began to develop extensively in the late 18th century, with rapid expansion throughout the 19th century and early 20th century when the industry peaked. The location of the coalfields helped to make the prosperity of Lancashire, Yorkshire, and South Wales. Northumberland and Durham were the leading coal producers and the sites of the first deep pits. In much of Britain, coal was worked from drift mines or scraped off when it outcropped on the surface. Small groups of part-time miners used shovels and primitive equipment. As a result of these limited methods, in the deep Tyneside pits (300 to 1,000 ft deep) for example, only about 40 percent of the coal could be extracted.
Coal was so abundant in Britain that the supply could be increased to meet the rapidly rising demand. In 1700, the annual output of coal was just under 3 million tons. Between 1770 and 1780, the annual output of coal was some 6.25 million long tons (or about the output of a week and a half in the 20th century). After 1790 output soared, reaching 16 million long tons by 1815. By 1830 this rose to over 30 million tons.
Use of Coal During the Industrial Revolution
The development of the Industrial Revolution led to the large-scale use of coal as the steam engine took over from the water wheel. In 1700, five-sixths of the world’s coal was mined in Britain.
Steam Engine and Coal Mining
Coal was central to the development of the steam engine and in turn, the steam engine dramatically increased the efficiency of coal mining.
Before the steam engine, shallow bell pits followed a seam of coal along the surface, which were abandoned as the coal was extracted. In other cases, if the geology was favorable, the coal was mined by means of an adit or drift mine driven into the side of a hill. Shaft mining was done in some areas, but the limiting factor was the problem of removing water. It could be done by hauling buckets of water up the shaft or to a sough (a tunnel driven into a hill to drain a mine). In either case, the water had to be discharged into a stream or ditch at a level where it could flow away by gravity.