Answer:
P(1833 < X < 1975) = 7.55%
Step-by-step explanation:
From the given information:
Let X be the random variable that obeys a normal distribution and which represents the monthly electric consumption during winter by all households in the Boston area.
X
N ( μ = 1650 , σ² = 320² )
The probability that a monthly consumption of 1883 to 1975 kilowatt is given as:
![P(1883 < X< 1975) = P( \dfrac{1883 -1650}{320} < Z< \dfrac{1975-1650}{320})](https://tex.z-dn.net/?f=P%281883%20%3C%20X%3C%20%201975%29%20%3D%20P%28%20%5Cdfrac%7B1883%20-1650%7D%7B320%7D%20%3C%20Z%3C%20%5Cdfrac%7B1975-1650%7D%7B320%7D%29)
![P(1883](https://tex.z-dn.net/?f=P%281883%20%3CX%3C%201975%29%20%3D%20P%28%20%5Cdfrac%7B233%7D%7B320%7D%20%3C%20Z%3C%20%5Cdfrac%7B325%7D%7B320%7D%29)
![P(1883 < X](https://tex.z-dn.net/?f=P%281883%20%3C%20X%3C1975%29%20%3D%20P%28%200.728%20%3C%20Z%3C%201.0156%29)
P(1833 < X < 1975) = P(Z< 1.0156) - P(Z< 0.738)
P(1833 < X < 1975) = 0.8452 - 0.7697
P(1833 < X < 1975) = 0.0755
P(1833 < X < 1975) = 7.55%