Answer:
thats so deep
<em>i</em><em> </em><em>see</em><em> </em><em>where</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>coming</em><em> </em><em>from</em><em> </em><em>and</em><em> </em><em>i</em><em> </em><em>see</em><em> </em><em>ur</em><em> </em><em>point</em>
<em>ppljust</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>stop</em><em> </em><em>being</em><em> </em><em>selfish</em><em> </em><em>an</em><em> </em><em>helo</em><em> </em><em>eachother</em><em> </em><em>wetre</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>pandemic</em><em> </em><em>for</em><em> </em><em>christs</em><em> </em><em>sake</em>
The correct answer would be B because .47 is bigger than 42/100 or .42
Convert the timing into hours only:
11:15 = 11.25h
9:45 = 9.75h
11:45 = 11.75h
7:45 = 7.75h
10:45 = 10.75h
To find the average, we need to find the middle of these timing:
11.25 + 9.75 + 11.75 + 7.75 + 10.75 = 51.25
51.25 ÷ 5 = 10.25h = 10:15 am
------------------------------------------------------------------------
Answer: The average time it docks is 10:15 am.
------------------------------------------------------------------------
Answer: she will have $2042.4 have in the account after 1 year.
Step-by-step explanation:
We would apply the formula for determining compound interest which is expressed as
A = P(1 + r/n)^nt
Where
A = total amount in the account at the end of t years
r represents the interest rate.
n represents the periodic interval at which it was compounded.
P represents the principal or initial amount deposited
From the information given,
P = $2000
r = 2.1% = 2.1/100 = 0.021
n = 12 because it was compounded 12 times in a year.
t = 1 year
Therefore,
A = 2000(1 + 0.021/12)^12 × 1
A = 2000(1 + 0.00175)^12
A = 2000(1.00175)^12
A = $2042.4
20 liters. If there’s 8 liters every 2 days, 8 divided by 2 is 4. 4x5 is 20 liters.