1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
3 years ago
12

Label the following graph as vertical or horizontal:

Mathematics
1 answer:
vfiekz [6]3 years ago
8 0
The answer is vertical.
You might be interested in
The amount of syrup that people put on their pancakes is normally distributed with mean 63 mL and standard deviation 13 mL. Supp
andreyandreev [35.5K]

Answer:

(a) X ~ N(\mu=63, \sigma^{2} = 13^{2}).

    \bar X ~ N(\mu=63,s^{2} = (\frac{13}{\sqrt{43} } )^{2}).

(b) If a single randomly selected individual is observed, the probability that this person consumes is between 61.4 mL and 62.8 mL is 0.0398.

(c) For the group of 43 pancake eaters, the probability that the average amount of syrup is between 61.4 mL and 62.8 mL is 0.2512.

(d) Yes, for part (d), the assumption that the distribution is normally distributed necessary.

Step-by-step explanation:

We are given that the amount of syrup that people put on their pancakes is normally distributed with mean 63 mL and a standard deviation of 13 mL.

Suppose that 43 randomly selected people are observed pouring syrup on their pancakes.

(a) Let X = <u><em>amount of syrup that people put on their pancakes</em></u>

The z-score probability distribution for the normal distribution is given by;

                      Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = mean amount of syrup = 63 mL

            \sigma = standard deviation = 13 mL

So, the distribution of X ~ N(\mu=63, \sigma^{2} = 13^{2}).

Let \bar X = <u><em>sample mean amount of syrup that people put on their pancakes</em></u>

The z-score probability distribution for the sample mean is given by;

                      Z  =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \mu = mean amount of syrup = 63 mL

            \sigma = standard deviation = 13 mL

            n = sample of people = 43

So, the distribution of \bar X ~ N(\mu=63,s^{2} = (\frac{13}{\sqrt{43} } )^{2}).

(b) If a single randomly selected individual is observed, the probability that this person consumes is between 61.4 mL and 62.8 mL is given by = P(61.4 mL < X < 62.8 mL)

   P(61.4 mL < X < 62.8 mL) = P(X < 62.8 mL) - P(X \leq 61.4 mL)

  P(X < 62.8 mL) = P( \frac{X-\mu}{\sigma} < \frac{62.8-63}{13} ) = P(Z < -0.02) = 1 - P(Z \leq 0.02)

                                                           = 1 - 0.50798 = 0.49202

  P(X \leq 61.4 mL) = P( \frac{X-\mu}{\sigma} \leq \frac{61.4-63}{13} ) = P(Z \leq -0.12) = 1 - P(Z < 0.12)

                                                           = 1 - 0.54776 = 0.45224

Therefore, P(61.4 mL < X < 62.8 mL) = 0.49202 - 0.45224 = 0.0398.

(c) For the group of 43 pancake eaters, the probability that the average amount of syrup is between 61.4 mL and 62.8 mL is given by = P(61.4 mL < \bar X < 62.8 mL)

   P(61.4 mL < \bar X < 62.8 mL) = P(\bar X < 62.8 mL) - P(\bar X \leq 61.4 mL)

  P(\bar X < 62.8 mL) = P( \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } < \frac{62.8-63}{\frac{13}{\sqrt{43} } } ) = P(Z < -0.10) = 1 - P(Z \leq 0.10)

                                                           = 1 - 0.53983 = 0.46017

  P(\bar X \leq 61.4 mL) = P( \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } \leq \frac{61.4-63}{\frac{13}{\sqrt{43} } } ) = P(Z \leq -0.81) = 1 - P(Z < 0.81)

                                                           = 1 - 0.79103 = 0.20897

Therefore, P(61.4 mL < X < 62.8 mL) = 0.46017 - 0.20897 = 0.2512.

(d) Yes, for part (d), the assumption that the distribution is normally distributed necessary.

4 0
3 years ago
Which pair of numbers has a GCF of 3? Group of answer choices (A) 3 and 18 (B) 8 and 24 (C)12 and 18 (D) 1 and 3
Arte-miy333 [17]

Answer:

A, B and C

Step-by-step explanation:

A) 3 and 18 = has 3 as factor

B) 8 and 24 = has 3 as factor

C) 12 and 18 = has 3 as factor

D) 1 and 3 = has as factor of 1 and 3

so the answer is A, B and C

5 0
3 years ago
3 tenths +4 tenths +__________tenths
algol [13]

Well four plus seven would equal seven tenths.

6 0
3 years ago
D<br> Evaluate<br> arcsin<br> (6)]<br> at x = 4.<br> dx
sineoko [7]

Answer:

\frac{1}{2\sqrt{5} }

Step-by-step explanation:

Let, \text{sin}^{-1}(\frac{x}{6}) = y

sin(y) = \frac{x}{6}

\frac{d}{dx}\text{sin(y)}=\frac{d}{dx}(\frac{x}{6})

\frac{d}{dx}\text{sin(y)}=\frac{1}{6}

\frac{d}{dx}\text{sin(y)}=\text{cos}(y)\frac{dy}{dx} ---------(1)

\frac{1}{6}=\text{cos}(y)\frac{dy}{dx}

\frac{dy}{dx}=\frac{1}{6\text{cos(y)}}

cos(y) = \sqrt{1-\text{sin}^{2}(y) }

          = \sqrt{1-(\frac{x}{6})^2}

          = \sqrt{1-(\frac{x^2}{36})}

Therefore, from equation (1),

\frac{dy}{dx}=\frac{1}{6\sqrt{1-\frac{x^2}{36}}}

Or \frac{d}{dx}[\text{sin}^{-1}(\frac{x}{6})]=\frac{1}{6\sqrt{1-\frac{x^2}{36}}}

At x = 4,

\frac{d}{dx}[\text{sin}^{-1}(\frac{4}{6})]=\frac{1}{6\sqrt{1-\frac{4^2}{36}}}

\frac{d}{dx}[\text{sin}^{-1}(\frac{2}{3})]=\frac{1}{6\sqrt{1-\frac{16}{36}}}

                   =\frac{1}{6\sqrt{\frac{36-16}{36}}}

                   =\frac{1}{6\sqrt{\frac{20}{36} }}

                   =\frac{1}{\sqrt{20}}

                   =\frac{1}{2\sqrt{5}}

4 0
3 years ago
Simplify quantity 4 x squared plus 12 x minus 16 all over quantity 2x plus 10 over quantity 6 x plus 24 over quantity x squared
Softa [21]
The answer is: (x-1)(x+4)/3
hope this helped! (:
6 0
3 years ago
Read 2 more answers
Other questions:
  • A family drove to their grandmother's house after the average 200 miles per day
    5·1 answer
  • I need help on this problem
    14·2 answers
  • Helpppppppppppppp:))))
    14·1 answer
  • If you answer this question correctly i'll give you brainliest.
    7·2 answers
  • Which data set has an apparent negative, but not perfect, linear relationship between its two variables
    7·1 answer
  • (d)
    11·1 answer
  • Please help me ASAP...​
    12·1 answer
  • The answer is 10 i just want the solution ​
    10·1 answer
  • Please help thank you!❤️
    14·1 answer
  • Write the ratio as a fraction in simplest form.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!