Answer:
Step-by-step explanation:
1) As the sample size is 1,000 and there are 23 defectives in the output of the sample collected from Machine #1, the answer is 23/1000=0.023.
2) Estimate of the process proportion of defectives is the average of the proportion of defectives from all samples. In this case, it is : (23+15+29+13)/{4*(1000)}=80/4000=0.02.
3) Estimate of the Standard Deviation: Let us denote the mean (average) of the proportion of defectives by p. Then, the estimate for the standard deviation is : sqrt{p*(1 - p)/n}. Where n is the sample size. Putting p = 0.02, and n = 1000, we get: σ=0.0044.
4) The control Limits for this case, at Alpha risk of 0.05 (i.e. equivalent to 95% confidence interval), can be found out using the formulas given below:
Lower Control Limit : p - (1.96)*σ = 0.02 - (1.96)*0.0044=0.0113.
& Upper Control Limit: p + (1.96)*σ = 0.02 + (1.96)*0.0044 = 0.0287.
5) The proportion defective in each case is : Machine #1: 0.023; Machine #2: 0.015; Machine# 3: 0.029; Machine# 4: 0.013. For the Lower & Upper control limits of 0.014 & 0.026; It is easy to see that Machines #3 & #4 appear to be out of control.
Answer:
Graph C
Step-by-step explanation:
Answer:
C
Step-by-step explanation:
You can only complete the square with quadratic equations (equations leading with x^2)
C is the only answer choice that leads with x^2
Answer: 33
If you put all the numbers In order from least to greatest and find the middle number you'll get the answer