1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
8

Solve for X with A and B

Mathematics
1 answer:
Over [174]3 years ago
8 0

Answer:

9 and 3

Step-by-step explanation:

10/15=6/(2x-9)

90=10(2x-9)

9=2x-9

x=9

18-8=10

10/(4x+3)=8/12

120=8(4x+3)

30=8x+6

x=3

You might be interested in
I really need help on this one, guys
Gennadij [26K]

Answer:

6.2 meters

Step-by-step explanation:

Use pythagorean theorem to find b:

b = √(2.8² - 2.7²) = √0.55 = 0.7 (nearest tenth)

Perimeter of triangle = sum of all its sides = 2.8 + 2.7 + 0.7

Perimeter = 6.2 meters

6 0
3 years ago
8/10 Minus 3/5 In simplest form
joja [24]
\frac{8}{10} -  \frac{3}{5} \\ \\  \frac{4}{5} -  \frac{3}{5} \ / \ simplify \\ \\  \frac{4-3}{5} \ / \ combine \ denominators \\ \\  \frac{1}{5} \ / \ simplify \\ \\

The final result is 1/5 or, in decimal form, 0.2.
6 0
4 years ago
Read 2 more answers
The slope represents the ________ of a line.
Butoxors [25]

Answer:

Gradient

Step-by-step explanation:

The slope represents the gradient of a line

4 0
3 years ago
Suppose that the number of drivers who travel between a particular origin and destination during a designated time period has a
kipiarov [429]

Answer:

a) P(k≤11) = 0.021

b) P(k>23) = 0.213

c) P(11≤k≤23) = 0.777

P(11<k<23) = 0.699

d) P(15<k<25)=0.687

Step-by-step explanation:

a) What is the probability that the number of drivers will be at most 11?

We have to calculate P(k≤11)

P(k\leq11)=\sum_0^{11} P(k

P(k=0) = 20^0e^{-20}/0!=1 \cdot 0.00000000206/1=0\\\\P(k=1) = 20^1e^{-20}/1!=20 \cdot 0.00000000206/1=0\\\\P(k=2) = 20^2e^{-20}/2!=400 \cdot 0.00000000206/2=0\\\\P(k=3) = 20^3e^{-20}/3!=8000 \cdot 0.00000000206/6=0\\\\P(k=4) = 20^4e^{-20}/4!=160000 \cdot 0.00000000206/24=0\\\\P(k=5) = 20^5e^{-20}/5!=3200000 \cdot 0.00000000206/120=0\\\\P(k=6) = 20^6e^{-20}/6!=64000000 \cdot 0.00000000206/720=0\\\\P(k=7) = 20^7e^{-20}/7!=1280000000 \cdot 0.00000000206/5040=0.001\\\\

P(k=8) = 20^8e^{-20}/8!=25600000000 \cdot 0.00000000206/40320=0.001\\\\P(k=9) = 20^9e^{-20}/9!=512000000000 \cdot 0.00000000206/362880=0.003\\\\P(k=10) = 20^{10}e^{-20}/10!=10240000000000 \cdot 0.00000000206/3628800=0.006\\\\P(k=11) = 20^{11}e^{-20}/11!=204800000000000 \cdot 0.00000000206/39916800=0.011\\\\

P(k\leq11)=\sum_0^{11} P(k

b) What is the probability that the number of drivers will exceed 23?

We can write this as:

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))

P(k=12) = 20^{12}e^{-20}/12!=8442485.238/479001600=0.018\\\\P(k=13) = 20^{13}e^{-20}/13!=168849704.75/6227020800=0.027\\\\P(k=14) = 20^{14}e^{-20}/14!=3376994095.003/87178291200=0.039\\\\P(k=15) = 20^{15}e^{-20}/15!=67539881900.067/1307674368000=0.052\\\\P(k=16) = 20^{16}e^{-20}/16!=1350797638001.33/20922789888000=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=27015952760026.7/355687428096000=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=540319055200533/6402373705728000=0.084\\\\

P(k=19) = 20^{19}e^{-20}/19!=10806381104010700/121645100408832000=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=216127622080213000/2432902008176640000=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=4322552441604270000/51090942171709400000=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=86451048832085300000/1.12400072777761E+21=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=1.72902097664171E+21/2.5852016738885E+22=0.067\\\\

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))\\\\P(k>23)=1-(0.021+0.766)=1-0.787=0.213

c) What is the probability that the number of drivers will be between 11 and 23, inclusive? What is the probability that the number of drivers will be strictly between 11 and 23?

Between 11 and 23 inclusive:

P(11\leq k\leq23)=P(x\leq23)-P(k\leq11)+P(k=11)\\\\P(11\leq k\leq23)=0.787-0.021+ 0.011=0.777

Between 11 and 23 exclusive:

P(11< k

d) What is the probability that the number of drivers will be within 2 standard deviations of the mean value?

The standard deviation is

\mu=\lambda =20\\\\\sigma=\sqrt{\lambda}=\sqrt{20}= 4.47

Then, we have to calculate the probability of between 15 and 25 drivers approximately.

P(15

P(k=16) = 20^{16}e^{-20}/16!=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=0.084\\\\P(k=19) = 20^{19}e^{-20}/19!=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=0.067\\\\P(k=24) = 20^{24}e^{-20}/24!=0.056\\\\

3 0
3 years ago
2 2/3 divided by 1/3?
sergejj [24]
2 2/3 = 2x3+2/3 = 8/3
8/3 / 1/3 = 8/3 x 3/1 = 8/1 = 8
4 0
3 years ago
Read 2 more answers
Other questions:
  • If the measure of arc DEF is 248°, what is the measure of ∡DEF?
    9·2 answers
  • In this figure, which of the following are corresponding angles?
    5·1 answer
  • In a linear programming graph, the best (optimal) solution always occurs at a point called what?
    9·2 answers
  • The lines represented by the equations y = -X – 3 and
    12·1 answer
  • Need help please like I think I'm screwed
    5·1 answer
  • FREE 100 POINTS! I GIVE BRAINLIEST TO WHO ANSWERS FIRST.<br> solve 1 + 1 pls
    15·2 answers
  • Gas mileage is the number of miles you can drive on a gallon of gasoline. A test of a new car results in 460 miles o. 20 gallons
    5·1 answer
  • Please help me, i will give brainliest + 25 points
    10·1 answer
  • Anya is saving her allowance to purchase a bike. Anya started her savings with $10 and is saving $5 per week. Let y represent th
    10·2 answers
  • When solving a real world problem to find a person’s age, would a negative solution make sense? Explain
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!