Answer:
B. The membrane lets certain substances move across it freely, while others must move through a “gate”.
Explanation:
Selective permeability is a property of cellular membranes that only allows certain molecules to enter or exit the cell. This is important for the cell to maintain its internal order irrespective of the changes to the environment. For example, water, ions, glucose and carbon dioxide may need to be imported or exported from the cell depending on its metabolic activity. Similarly, signaling molecules may need to enter the cell and proteins may need to be released into the extracellular matrix. The presence of a selectively permeable membrane allows the cell to exercise control over the quantum, timing and rate of movement of these molecules.
Suppose that the proportion of the white crest alleles (r) is given by w and that of the Red crest allele (R) is given by p. We have that p+w=1. The probability that an individual has 2 r alleles is given by w*w since for each allele position the probability is w. Only these individuals have a White phenotype. Hence, we get that w^2=

; the right hand side is the proportion of white birds in the total population. Doing the calculations, this yields that w=0.37. From this, we calculate that p=0.63. The possible ways we have heterozygous individuals are the combinations Rr and rR. The probability for each of those is p*w. Thus, the total probability is 2pw. This is equal to 0.466=0.47. This is the fraction of the future population that is going to be heterozygous assuming the conditions of the Handy-Weinberg equilibrium like random reproductive matching etc.
Answer:
d
Explanation:
bacteria can replicate themselves without help from a living cell.
Answer: because the structure of their cell wall is unable to retain the crystal violet stain
Explanation:
Due to differences in the thickness of a peptidoglycan layer in the cell membrane between Gram-positive and Gram-negative bacteria, Gram-positive bacteria (with a thicker peptidoglycan layer) retain crystal violet stain during the decolorization process, while Gram-negative bacteria lose the crystal violet stain