Answer:
51 m^2
Step-by-step explanation:
The shaded area is the difference between the area of the overall figure and that of the rectangular cutout.
The applicable formulas are ...
area of a triangle:
A = (1/2)bh
area of a rectangle:
A = bh
area of a trapezoid:
A = (1/2)(b1 +b2)h
___
We note that the area of a triangle depends only on the length of its base and its height. The actual shape does not matter. Thus, we can shift the peak of the triangular portion of the shape (that portion above the top horizontal line) so that it lines up with one vertical side or the other of the figure. That makes the overall shape a trapezoid with bases 16 m and 10 m. The area of that trapezoid is then ...
A = (1/2)(16 m + 10 m)(5 m) = 65 m^2
The area of the white internal rectangle is ...
A = (2 m)(7 m) = 14 m^2
So, the shaded area is the difference:
65 m^2 -14 m^2 = 51 m^2 . . . . shaded area of the composite figure
_____
<em>Alternate approach</em>
Of course, you can also figure the area by adding the area of the triangular "roof" to the area of the larger rectangle, then subtracting the area of the smaller rectangle. Using the above formulas, that approach gives ...
(1/2)(5 m)(16 m - 10 m) + (5 m)(10 m) - (2 m)(7 m) = 15 m^2 + 50 m^2 -14 m^2
= 51 m^2
Answer:
61.9047619048
Step-by-step explanation:
325/5.25= 61.9047619048
Answer:
C 180-123
Step-by-step explanation:
This is because 180 is what triangles always equal and if one angle is 128 then the rest will be answered from this equation
Answer:
Increase the quotient by one
Step-by-step explanation:
Since in the question it is mentioned that There is a total of 33 cards and wants to put 4 cards on each page
So for determining the number of pages for put all of his cards
We should do increment in the quotient by 1 as there is a requirement of an additional page for the left cards
Therefore the above is the answer