Answer:
Gap 1, S-Phase, Gap 2, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis
Hope this helps.
Answer: 2.00 V
Explanation:
The balanced redox reaction is:
Here Al undergoes oxidation by loss of electrons, thus act as anode. Copper undergoes reduction by gain of electrons and thus act as cathode.
Where both
are standard reduction potentials.
![E^0_{[Al^{3+}/Al]}=-1.66V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAl%5E%7B3%2B%7D%2FAl%5D%7D%3D-1.66V)
![E^0_{[Cu^{2+}/Cu]}=0.340V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D0.340V)
Thus the standard cell potential is 2.00 V
Answer:
it is phosphorus it has o most 2 times as much electromagnetically
Explanation:
Answer:
Ecel =0,04 V
Explanation:
Apply the Nerst equation,
Ecel= Ecelº - (RT/nF)*lnQ
where R=8,314 J/molK, T=25ºC=298K and F =96 485 Coulombs/mol e- and n=number of moles of electrons transferred in the balanced equation. Q is cocient of products and reactives power to respective coefficients, if is a gas apply partial pressure
Write the semiequation redox and verify the numbers of electron for balance. In this case you don't need to change nothing
2Cl−(aq)→Cl2(g) + 2e-
<u>2CO3+(aq) + 2e-→2CO2+(aq)</u>
2Cl−(aq) + <u>2CO3+(aq) </u>→<u>2CO2+(aq) + </u>Cl2(g)
Hence
Ecel= 0.483 V - 0.013Ln ([CO2+]^2*PCl2] / [CO3+]^2*[Cl-]^2)
Ecel= 0.483 V - 0.013Ln ([0.205]^2 * 7.3] / [0.19]^2*[0.144]^2)
Ecel =0,04 V
The first option i hope this helps