Answer:
Moles of H₂S needed = 6.2 mol
Moles of SO₂ produced = 6.2 mol
Explanation:
Given data:
Number of moles of O₂ = 9.3 mol
Moles of H₂S needed = ?
Moles of SO₂ produced = ?
Solution:
Chemical equation:
2H₂S + 3O₂ → 2SO₂ + 2H₂O
Now we will compare the moles of oxygen with H₂S.
O₂ : H₂S
3 : 2
9.3 : 2/3×9.3 = 6.2 mol
Now we will compare the moles of SO₂ with both reactant.
O₂ : SO₂
3 : 2
9.3 : 2/3×9.3 = 6.2 mol
H₂S : SO₂
2 : 2
6.2 : 6.2 mol
So 6.2 moles of SO₂ are produced.
Answer:
3.18 mol
Explanation:

n(CO2) = mass/ Mr.
= 25.5 / 16
= 1.59 mol
As per the equation above,
n(LiOH) : n(CO2)
2 : 1
∴ 3.18 : 1.59
The particles that make up the atomic nucleus of all atoms are both protons and neutrons.
The molecular weight of Mg(OH)2 : 58 g/mol
<h3>Further explanation</h3>
Given
Mg(OH)2 compound
Required
The molecular weight
Solution
Relative atomic mass (Ar) of element : the average atomic mass of its isotopes
Relative molecular weight (M) : The sum of the relative atomic mass of Ar
M AxBy = (x.Ar A + y. Ar B)
So for Mg(OH)2 :
= Ar Mg + 2 x Ar O + 2 x Ar H
= 24 g/mol + 2 x 16 g/mol + 2 x 1 g/mol
= 24 + 32 + 2
= 58 g/mol
Answer is: ph value of pyridine solution is 9.1.
Chemical
reaction: C₅H₅N +
H₂O → C₅H₅NH⁺ + OH⁻.<span>
c(pyridine - C</span>₅H₅N)
= 0.115M.<span>
Kb(C</span>₅H₅N)
= 1.4·10⁻⁹.
[C₅H₅NH⁺] = [OH⁻] = x; equilibrium concentration.<span>
[</span>C₅H₅N] =
0.115 M - x.
Kb = [C₅H₅NH⁺] · [OH⁻] / [C₅H₅N].
1.4·10⁻⁹ = x² / (0.115 M -x)
Solve quadratic equation: x = [OH⁻] = 0.0000127 M.<span>
pOH = -log(0.0000127 M) = 4.9</span>
<span>pH = 14 - 4.9 = 9.1.</span>