1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
3 years ago
11

Standard Error from a Formula and a Bootstrap Distribution Sample A has a count of 30 successes with and Sample B has a count of

50 successes with . Use StatKey or other technology to generate a bootstrap distribution of sample differences in proportions and find the standard error for that distribution. Compare the result to the value obtained using the formula for the standard error of a difference in proportions from this section.
Mathematics
1 answer:
tia_tia [17]3 years ago
5 0

Answer:

Using a formula, the standard error is: 0.052

Using bootstrap, the standard error is: 0.050

Comparison:

The calculated standard error using the formula is greater than the standard error using bootstrap

Step-by-step explanation:

Given

Sample A                          Sample B

x_A = 30                              x_B = 50

n_A = 100                             n_B =250

Solving (a): Standard error using formula

First, calculate the proportion of A

p_A = \frac{x_A}{n_A}

p_A = \frac{30}{100}

p_A = 0.30

The proportion of B

p_B = \frac{x_B}{n_B}

p_B = \frac{50}{250}

p_B = 0.20

The standard error is:

SE_{p_A-p_B} = \sqrt{\frac{p_A * (1 - p_A)}{n_A} + \frac{p_A * (1 - p_B)}{n_B}}

SE_{p_A-p_B} = \sqrt{\frac{0.30 * (1 - 0.30)}{100} + \frac{0.20* (1 - 0.20)}{250}}

SE_{p_A-p_B} = \sqrt{\frac{0.30 * 0.70}{100} + \frac{0.20* 0.80}{250}}

SE_{p_A-p_B} = \sqrt{\frac{0.21}{100} + \frac{0.16}{250}}

SE_{p_A-p_B} = \sqrt{0.0021+ 0.00064}

SE_{p_A-p_B} = \sqrt{0.00274}

SE_{p_A-p_B} = 0.052

Solving (a): Standard error using bootstrapping.

Following the below steps.

  • Open Statkey
  • Under Randomization Hypothesis Tests, select Test for Difference in Proportions
  • Click on Edit data, enter the appropriate data
  • Click on ok to generate samples
  • Click on Generate 1000 samples ---- <em>see attachment for the generated data</em>

From the randomization sample, we have:

Sample A                          Sample B

x_A = 23                              x_B = 57

n_A = 100                             n_B =250

p_A = 0.230                          p_A = 0.228

So, we have:

SE_{p_A-p_B} = \sqrt{\frac{p_A * (1 - p_A)}{n_A} + \frac{p_A * (1 - p_B)}{n_B}}

SE_{p_A-p_B} = \sqrt{\frac{0.23 * (1 - 0.23)}{100} + \frac{0.228* (1 - 0.228)}{250}}

SE_{p_A-p_B} = \sqrt{\frac{0.1771}{100} + \frac{0.176016}{250}}

SE_{p_A-p_B} = \sqrt{0.001771 + 0.000704064}

SE_{p_A-p_B} = \sqrt{0.002475064}

SE_{p_A-p_B} = 0.050

You might be interested in
The Miller family visited Mama's Kitchen and ordered 4 hamburgers and 3 medium fries and paid $17.35. James ordered a medium dri
strojnjashka [21]
Hamburger- $3.25
Fries- $1.45
Drink- $1.39
Hope this helps! :)
5 0
3 years ago
Read 2 more answers
Jada was using square stickers with a side length of 3/434 inch to decorate the spine of a photo album. The spine is 10 1/21012
Yuki888 [10]

Answer: The number of stickers she used to cover the length of the spine = 14.

Step-by-step explanation:

Given: The length of spine = 10\dfrac12 inches  = \dfrac{21}{2} inches

Length of each sticker = \dfrac34 inch

If she laid the stickers side by side without gaps or overlaps, the number of stickers she use to cover the length of the spine = \text{(Length of spine)}\div (\text{Length of each sticker})

=\dfrac{21}{2}\div\dfrac{3}{4}\\\\=\dfrac{21}{2}\times\dfrac{4}{3}\\\\=\dfrac{7\times2}{1}=14

The number of stickers she used to cover the length of the spine = 14.

4 0
3 years ago
6 x 8 x 8 x 6 x 8 x 8 x 6
Darina [25.2K]

Answer:

884736

Step-by-step explanation:

Multiply using the order of operations, from left to right.

6 0
2 years ago
Find x step by step (10 points)
AleksandrR [38]

Answer:

\sqrt{(n-m)(n+m)} & -\sqrt{(n-m)(n+m)}

Step-by-step explanation:

1) Subtract m^{2} from both sides. This should leave you with x^{2}=n^{2}-m^{2}.

2) Square root both sides. This should leave you with x=\sqrt{n^2-m^2} & x=-\sqrt{n^2-m^2}.

<em>You can stop here if this is what the problem is asking for. However, it is not fully simplified.</em>

<em />

3) Factor the equation. This should leave you with \sqrt{(n-m)(n+m)} & -\sqrt{(n-m)(n+m)}.

4 0
2 years ago
Read 2 more answers
Examine the following sequence 1, 4, 9, 16, 25…. Why is 36 the next number in the sequence? Because the pattern is
Marrrta [24]
 Because the pattern is a Geometric sequence.
8 0
3 years ago
Read 2 more answers
Other questions:
  • How do you find the remainder of (x^3-6x^2-9x+3) / (x-3)
    13·1 answer
  • The vertices of a triangle are located at P(0, 0), Q(8, 6), and R(-3, 4). What is the perimeter of this triangle?
    5·1 answer
  • Mark has an $879 annual base premium. If he is 21, what will he pay for the policy? $2,567.29 $1,500.15 $2,115.90 $1,889.85
    11·1 answer
  • linda has $9 in her wallet. she buys a car for $1.17. she wants to buy some pens that cost 2.65 each. what is the maximum number
    6·1 answer
  • HELP ASAP !!!!!!!!!!!!!!!!!!!
    9·1 answer
  • A soda container holds 5 1/2 gallons of soda. How many ounces of soda does this container hold
    6·1 answer
  • 9. Given that P = (-1,16) and Q = (1, 9), find the component form and
    10·1 answer
  • Kevin made $20 last week. This week he made $27. What was his percent increase?
    6·2 answers
  • Cierra is buying juice. She needs 5 liters. A half liter juice cost $2.86. A 250​-milliliter container of juice costs ​$1.05. Wh
    15·1 answer
  • Which of the following is most likely the next step in the series? ​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!