I do not see any possible answers that you have posted. But a good idea would be that it might have fossils, water currents, mud cracks, usually form in shallow seas. Hope this helps!
Answer:
Explanation:
The combustion reaction of Octane is:
To calculate the mass of CO₂ and H₂O produced, we need to know the mass of octane combusted.
We calculate the mass of Octane from the given volume and density, using the following <em>conversion factors</em>:
Now we<u> convert 1.24 gallons to mL</u>:
- 1.24 gallon *
4693.4 mL
We <u>calculate the mass of Octane</u>:
- 4693.4 mL * 0.703 g/mL = 3.30 g Octane
Now we use the <em>stoichiometric ratios</em> and <em>molecular weights</em> to <u>calculate the mass of CO₂ and H₂O</u>:
- CO₂ ⇒ 3.30 g Octane ÷ 114g/mol *
* 44 g/mol = 10.19 g CO₂
- H₂O ⇒ 3.30 g Octane ÷ 114g/mol *
* 18 g/mol = 4.69 g H₂O
If I heat a reaction then the rate will increase because the higher the temperature the faster the reaction.
Please vote my answer brainliest. thanks!
Answer:
The molecule has a bent geometry
Explanation:
Let us look again at the principles of VSEPR theory. The shape of a molecule depends on the number of electron pairs that surround the valence shell of the central atom in the molecule.
Lone pairs distort the molecular geometry away from what is expected on the basis of VSEPR theory.
The molecule described in the question has the form AEX2. Two substituents and one lone pair form three electron domains around the central atom. The expected geometry is trigonal planar but the observed molecular geometry is bent because of the lone pairs present.