The concentration of [H3O⁺]=2.86 x 10⁻⁶ M
<h3>Further explanation</h3>
In general, the weak acid ionization reaction
HA (aq) ---> H⁺ (aq) + A⁻ (aq)
Ka's value
![\large {\boxed {\bold {Ka \: = \: \frac {[H ^ +] [A ^ -]} {[HA]}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BKa%20%5C%3A%20%3D%20%5C%3A%20%5Cfrac%20%7B%5BH%20%5E%20%2B%5D%20%5BA%20%5E%20-%5D%7D%20%7B%5BHA%5D%7D%7D%7D%7D)
Reaction
HC₂H₃O₂ (aq) + H₂O (l) ⇔ (aq) + H₃O⁺ (aq) Ka = 1.8 x 10⁻⁵
![\tt Ka=\dfrac{[C_2H_3O^{2-}[H_3O^+]]}{[HC_2H_3O_2]}}\\\\1.8\times 10^{-5}=\dfrac{0.22\times [H_3O^+]}{0.035}](https://tex.z-dn.net/?f=%5Ctt%20Ka%3D%5Cdfrac%7B%5BC_2H_3O%5E%7B2-%7D%5BH_3O%5E%2B%5D%5D%7D%7B%5BHC_2H_3O_2%5D%7D%7D%5C%5C%5C%5C1.8%5Ctimes%2010%5E%7B-5%7D%3D%5Cdfrac%7B0.22%5Ctimes%20%5BH_3O%5E%2B%5D%7D%7B0.035%7D)
[H₃O⁺]=2.86 x 10⁻⁶ M
Answer:
- <u>2.59 × 10⁻⁷ m = 259 nm</u>
Explanation:
You need to calculate the wavelength of a photon with an energy equal to 463 kJ/mol, which is the energy to break an oxygen-hydrogen atom.
The energy of a photon and its wavelength are related by the Planck - Einstein equation:
Where:
- h = Planck constant (6.626 × 10⁻³⁴ J . s) and
- ν = frequency of the photon.
And:
Where:
- c = speed of light (3.00 × 10⁸ m/s in vacuum)
- λ = wavelength of the photon
Thus, you can derive:
Solve for λ:
Before substituting the values, convert the energy, 463 kJ/ mol, to J/bond
- 463 kJ/ mol × 1,000 J/kJ × 1 mol / 6.022 × 10 ²³ atom × 1 bond / atom
= 7.69×10²³ J / bond
Substitute the values and use the energy of one bond:
- λ = 6.626 × 10⁻³⁴ J . s × 3.00 × 10⁸ m/s / 7.69×10²³ J = 2.59 × 10⁻⁷ m
The wavelength of light is usually shown in nanometers:
- 2.59 × 10⁻⁷ m × 10⁹ nm / m = 259 nm ← answer