Answer:
c is the correct awnser ( to code and test )
Answer:
O(N!), O(2N), O(N2), O(N), O(logN)
Explanation:
N! grows faster than any exponential functions, leave alone polynomials and logarithm. so O( N! ) would be slowest.
2^N would be bigger than N². Any exponential functions are slower than polynomial. So O( 2^N ) is next slowest.
Rest of them should be easier.
N² is slower than N and N is slower than logN as you can check in a graphing calculator.
NOTE: It is just nitpick but big-Oh is not necessary about speed / running time ( many programmers treat it like that anyway ) but rather how the time taken for an algorithm increase as the size of the input increases. Subtle difference.
Answer:
I guessed D, taking it right now, sorry if it's wrong
Explanation:
Answer:
i have no ideaaaaaaaaaaaaaaaaaaaaaa
Explanation:
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa kill me