Answer:
<h2>Solving elastic collisions problem the hard way</h2><h3 />
Explanation:
perfect drawing
Answer:
11 m/s
Explanation:
Draw a free body diagram. There are two forces acting on the car:
Weigh force mg pulling down
Normal force N pushing perpendicular to the incline
Sum the forces in the +y direction:
∑F = ma
N cos θ − mg = 0
N = mg / cos θ
Sum the forces in the radial (+x) direction:
∑F = ma
N sin θ = m v² / r
Substitute and solve for v:
(mg / cos θ) sin θ = m v² / r
g tan θ = v² / r
v = √(gr tan θ)
Plug in values:
v = √(9.8 m/s² × 48 m × tan 15°)
v = 11.2 m/s
Rounded to 2 significant figures, the maximum speed is 11 m/s.
This might help and it might not:
Gravitation is the acting force between two bodies. On the other hand, gravity is the force occurring between an object and the very big object earth. Every object with some mass exerts the gravitational force on every other object having some mass. This force and its strength depend on the masses of the objects under consideration. Gravity helps to keep the planets to move in their orbit around the sun.
Gravitation is the force of attraction between any two bodies in the universe. In our universe, each object attracts each other with a certain amount of force. The large distance of separation is the main reason for its weak nature.
Gravity is the weakest type of fundamental force in nature. Still, it holds together the entire solar systems and galaxies.
Gravity has the existence with unlimited range.
Answer:
1200N/m
Explanation:
given parameters:
force on the motorcycle spring is 240N
Extension 2cm or 0.02m
unknown _
spring constant:
:?
solution:
to a spring a force applied is given as :
f=ke
f is applied as force
k is spring constant
e is the Extension
240= kx0.02
k=1200N/m