<h2>Answer: electrostatic and gravitational force
</h2><h2 />
Mechanical energy remains constant (conserved) if only <u>conservative forces</u> act on the particles.
In this sense, the following forces are conservative:
-Gravitational
-Elastic
-Electrostatics
While the Friction Force and the Magnetic Force are not conservative.
According to this, mechanical energy is conserved in the presence of electrostatic and gravitational forces.
"This resolving power" was obviously stated earlier, somewhere before the point where you started copying. With no resolving power specified, there's actually no question, and so no answer.
They cause an increase in temp of earths atmosphere or warming by absorbing solar energy. hope this helps
Hcchhchchhhchchchcnjnnnnnn
Answer:
FC vector representation

Magnitude of FC

Vector direction FC
degrees: angle that forms FC with the horizontal
Explanation:
Conceptual analysis
Because the particle C is close to two other electrically charged particles, it will experience two electrical forces and the solution of the problem is of a vector nature.
The directions of the individual forces exerted by qA and qB on qC are shown in the attached figure; The force (FAC) of qA over qC is repulsive because they have equal signs and the force (FBC) of qB over qC is attractive because they have opposite signs.
The FAC force is up in the positive direction and the FBC force forms an α angle with respect to the x axis.
degrees
To calculate the magnitudes of the forces we apply Coulomb's law:
Equation (1): Magnitude of the electric force of the charge qA over the charge qC
Equation (2)
: Magnitude of the electric force of the charge qB over the charge qC
Known data





Problem development
In the equations (1) and (2) to calculate FAC Y FBC:


Components of the FBC force at x and y:


Components of the resulting force acting on qC:


FC vector representation

Magnitude of FC

Vector direction FC
degrees: angle that forms FC with the horizontal