Answer:
yes 1+1=2
Step-by-step explanation:
Answer:
m = 90 degrees
g = 90 degrees
Step-by-step explanation:
Two angles are called supplementary when their measures add up to 180 degrees.
90 + 90 = 180
Answer:
here you go...
A line code is a code used to transmit digital signal data over a transmission line. Common line encodings are unipolar, polar, bipolar, and Manchester code. NonReturn-to-Zero NRZ and Return-to-Zero technologies are used in unipolar, polar, and bipolar line coding schemes. Line coding is used to reduce bandwidth, reduce the chance of error, and increase efficiency. The purpose of this lab is to understand different types of row encoding, use MATLAB to implement row encoding functions, and use the input data to simulate those row encoding functions.
hope this helps
please amrk brainiest
Check the picture below.
now, we're making an assumption that, the two blue shaded region are equal in shape, and thus if that's so, that area above the 14 is 6 and below it is also 6, 14 + 6 + 6 = 26.
so hmm if we simply get the area of the trapezoid and subtract the area of the yellow triangle and the area of the cyan triangle, what's leftover is what we didn't subtract, namely the shaded region.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h~~=height\\ a,b=\stackrel{parallel~sides}{bases~\hfill }\\[-0.5em] \hrulefill\\ h=15\\ a=14\\ b=26 \end{cases}\implies A=\cfrac{15(14+26)}{2}\implies A=300 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Areas}}{\stackrel{trapezoid}{300}~~ - ~~\stackrel{yellow~triangle}{\cfrac{1}{2}(26)(9)}~~ - ~~\stackrel{cyan~triangle}{\cfrac{1}{2}(15)(6)}} \\\\\\ 300~~ - ~~117~~ - ~~45\implies 138\qquad \textit{blue shaded area}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h~~%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases~%5Chfill%20%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D15%5C%5C%20a%3D14%5C%5C%20b%3D26%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B15%2814%2B26%29%7D%7B2%7D%5Cimplies%20A%3D300%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btrapezoid%7D%7B300%7D~~%20-%20~~%5Cstackrel%7Byellow~triangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%2826%29%289%29%7D~~%20-%20~~%5Cstackrel%7Bcyan~triangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%2815%29%286%29%7D%7D%20%5C%5C%5C%5C%5C%5C%20300~~%20-%20~~117~~%20-%20~~45%5Cimplies%20138%5Cqquad%20%5Ctextit%7Bblue%20shaded%20area%7D)
Answer:
52 units
Step-by-step explanation:
We know that,
<em>A perpendicular bisector cuts a line segment into two equal parts at 90°.</em>
As, CB is a perpendicular bisector of AD. So, it cuts AD into 2 equal parts.
We have,
AB = DB
i.e. 7x + 10 = 9x - 2
i.e. 7x - 9x = -2 - 10
i.e. -2x = -12
i.e. x = 6.
Thus, AB = 7x + 10 = 7×6 + 10 = 42 + 10 = 52.
Hence, the length of AB is 52 units.