Jay walks 2 1/4 miles which if you double it so the denominators are e same for both 2 1/4 and 1 1/8 then your answer will be 18/8 (Jay) and 9/8 (Reggie). Meaning that Reggie walks have the distance Jay walks.
Vertex<em> </em>is at 
<em>y-intercept</em> is 3.
The parabola <em>opens up</em>.
Step-by-step explanation:
The graph of the equation is hereby attached in the answer area.
Vertex is the point on the parabola where the graph crosses its axis of symmetry. The axis of symmetry here(
), is shown with the dotted line in the graph attached.
<em>y-intercept </em>is defined as the value of y where the graph crosses the y-axis. In other words, when
. Putting
And, the graph opens up as shown the graph figure as well. It is also evident from the co-efficient of
in the given equation
. Here, co-efficient of
So, vertex<em> </em>is at 
<em>y-intercept</em> is 3.
The parabola <em>opens up</em>.
Answer:
5 units. Since they have the same y coordinate the x coordinate determines the distance from each other. In the case 9-4=5.
Answer:
We have the equation
![c_1\left[\begin{array}{c}0\\0\\0\\1\end{array}\right] +c_2\left[\begin{array}{c}0\\0\\3\\1\end{array}\right] +c_3\left[\begin{array}{c}0\\4\\3\\1\end{array}\right] +c_4\left[\begin{array}{c}8\\4\\3\\1\end{array}\right] =\left[\begin{array}{c}0\\0\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=c_1%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_2%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_4%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Then, the augmented matrix of the system is
![\left[\begin{array}{cccc}0&0&0&8\\0&0&4&4\\0&3&3&3\\1&1&1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D0%260%260%268%5C%5C0%260%264%264%5C%5C0%263%263%263%5C%5C1%261%261%261%5Cend%7Barray%7D%5Cright%5D)
We exchange rows 1 and 4 and rows 2 and 3 and obtain the matrix:
![\left[\begin{array}{cccc}1&1&1&1\\0&3&3&3\\0&0&4&4\\0&0&0&8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%261%261%261%5C%5C0%263%263%263%5C%5C0%260%264%264%5C%5C0%260%260%268%5Cend%7Barray%7D%5Cright%5D)
This matrix is in echelon form. Then, now we apply backward substitution:
1.

2.

3.

4.

Then the system has unique solution that is
and this imply that the vectors
are linear independent.
Answer:
yo emanuael
Step-by-step explanation: